
Jin Xu

Biological
Computing

Biological Computing

Jin Xu

Biological Computing

Jin Xu
School of Computer Science
Peking University
Beijing, China

ISBN 978-981-96-3869-7 ISBN 978-981-96-3870-3 (eBook)
https://doi.org/10.1007/978-981-96-3870-3

This work was supported by Jin Xu.

The original submitted manuscript has been translated into English. The translation was done using
artificial intelligence. A subsequent revision was performed by the author(s) to further refine the work
and to ensure that the translation is appropriate concerning content and scientific correctness. It may,
however, read stylistically different from a conventional translation.

© The Editor(s) (if applicable) and The Author(s) 2025. This book is an open access publication.

Open Access This book is licensed under the terms of the Creative Commons Attribution 4.0 Inter-
national License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation,
distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons license and indicate if changes
were made.
The images or other third party material in this book are included in the book’s Creative Commons
license, unless indicated otherwise in a credit line to the material. If material is not included in the book’s
Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copyright holder.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Singapore Pte Ltd.
The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721,
Singapore

If disposing of this product, please recycle the paper.

https://doi.org/10.1007/978-981-96-3870-3
https://doi.org/10.1007/978-981-96-3870-3
https://doi.org/10.1007/978-981-96-3870-3
https://doi.org/10.1007/978-981-96-3870-3
https://doi.org/10.1007/978-981-96-3870-3
https://doi.org/10.1007/978-981-96-3870-3
https://doi.org/10.1007/978-981-96-3870-3
https://doi.org/10.1007/978-981-96-3870-3
https://doi.org/10.1007/978-981-96-3870-3
https://doi.org/10.1007/978-981-96-3870-3
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

This book is dedicated to Professor Ke Liu,
with sincere appreciation for his
contributions to the advancement of
biological computing both in China and
globally.

Preface

In 1996, I was deeply engaged in addressing complex graph theory challenges,
such as the Traveling Salesman Problem, the Graph Coloring Problem, and the
Hamiltonian Problem, utilizing Artificial Neural Networks (ANNs). These problems
are categorized as NP-complete, and I aspired to develop efficient algorithms for
them with the help of ANNs. I guided my doctoral students in publishing several
academic papers focused on tackling NP-complete problems through the use of
ANNs. One day, one of my doctoral students mentioned discovering an article in
Science that presented a method for solving the Directed Hamiltonian Path Problem
using DNA molecules. I was exhilarated by this finding, convinced it could offer
a novel approach to addressing NP-complete problems, and I was eager to delve
deeper into the subject. I rushed to the library to photocopy the article and began
reading it. However, as I immersed myself in the text, I felt a sense of confusion—
having never studied biology in high school, I struggled to understand the biological
concepts and experimental designs described in the paper.

From that moment on, I resolved to make a significant contribution to the
field of biological computing by learning biology. I started from the ground up,
initially focusing on high school-level biology before progressing to more advanced
topics in molecular biology and biochemistry. After over a decade of dedicated
effort, I became proficient in independently executing essential stages of utilizing
DNA computing to address NP-complete problems, including mathematical model
construction, experimental design, and solution verification.

Over the past 30 years, DNA computing has progressed from enumeration-
based models to non-enumerative and parallel models. A significant milestone
occurred between 2002 and 2016 with the introduction of the probe machine, which
represented a groundbreaking advancement in the field. The probe machine is a fully
parallel mathematical computing model developed to establish a DNA model for
graph coloring. Its advent has provided computer science with a new mathematical
computing framework that distinguishes itself from the Turing machine, garnering
considerable attention from scholars and industry professionals alike.

This book provides a comprehensive overview of the research accomplishments
of scholars worldwide in the realm of biological computing over several decades.

vii

viii Preface

The main topics encompassed include fundamental theories, key technologies,
experimental methodologies, computational models, and application examples of
DNA computing. In the section dedicated to foundational theory, we detail the
structural characteristics of DNA molecules, the mechanisms of biological enzymes,
and the fundamental principles underlying DNA computing. This content lays the
groundwork for readers to comprehend the operation of DNA computing. The
chapters focusing on key technologies and experimental methodologies examine
essential techniques such as DNA encoding, PCR technology, and gel elec-
trophoresis. These techniques are critical for DNA computing, enabling readers to
understand the vital aspects of experimental design and execution. In our exploration
of computational models, we delve into various DNA computing frameworks,
including enumeration-based, non-enumerative, and parallel models. We discuss the
construction concepts behind these models, along with their respective advantages
and disadvantages, providing diverse options for addressing different types of
computational challenges. Furthermore, we present several case studies showcasing
the applications of DNA computing in fields such as cryptography, bioinformatics,
and optimization problems, highlighting the extensive potential of this innovative
computing approach.

The strength of this book lies in its systematic, innovative, and practical
approach. The systematic nature is evident in the comprehensive organization and
integration of knowledge pertaining to DNA computing, further enhanced by an
in-depth introduction to RNA computing and protein computing. By covering
everything from fundamental concepts to applications and effectively bridging
theory with practice, it establishes a robust knowledge framework. The innovative
aspect is showcased through a timely exploration of the latest advancements in DNA
computing research, including a thorough analysis of pioneering technologies such
as probe machines and DNA self-assembly, ensuring that readers are well-informed
about current developments in the field. The practical component is emphasized
through detailed descriptions of experimental procedures and clear explanations
of methods for constructing computational models, offering valuable guidance for
those involved in related research.

In our writing methodology, we have integrated both theoretical and practical
approaches. Initially, we undertook comprehensive research and systematic sum-
marization of the fundamental theories and essential technologies related to DNA
computing by reviewing a substantial body of literature. Building on our practical
experience gained from DNA computing experiments, we then provided a detailed
elaboration of the experimental procedures and key precautions to consider.

This book is designed for researchers in areas such as graph theory and
algorithms, bioinformatics, computer science, and molecular biology, as well as
for university students and self-learners with an interest in biological computing.
For researchers, it serves as a valuable reference on DNA computing, providing
insights into the latest developments and technological advancements in the field,
along with innovative ideas and methodologies for their scientific endeavors. For
university students, this book is appropriate as both a textbook and a reference
for biological computing courses, enabling them to systematically acquire essential

Preface ix

knowledge and skills in DNA computing, thereby establishing a firm foundation for
their future studies and research. For self-learners, the book’s clear language and
abundant examples facilitate a swift understanding of the core concepts of DNA
computing, enhancing their overall comprehension of the subject.

When engaging with this book, readers should consider the following points:
Firstly, as DNA computing encompasses various disciplines, a foundational under-
standing of biology, computer science, and graph theory is essential for a more
comprehensive grasp of the material. Secondly, the experimental procedures and
computational model-building techniques presented in this book call for practical
exploration and validation. Therefore, it is advisable to integrate hands-on activities
with the reading to deepen understanding and enhance practical skills. Furthermore,
considering the rapid advancements in DNA computing, readers should keep
an open mind and stay informed about the latest research developments and
technological trends to continuously enhance their knowledge.

This book has greatly benefited from the invaluable support and assistance of
Enqiang Zhu, Xiaoli Qiang, Gang Fang, Zheng Kou, Xiaolong Shi, Wenbin Liu, Yan
Wang, Zhihua Chen, Zehui Shao, Fengyue Zhang, Kai Zhang, and Congzhou Chen,
among others. The manuscript, particularly the illustrations, has undergone more
than a year of rigorous revision and refinement, reflecting their dedicated efforts. I
would like to express my heartfelt gratitude to each of them! Additionally, Chanjian
Liu, Xiaoqing Liu, and Huang Leng have meticulously proofread the entire book,
and I am equally thankful for their contributions.

Due to time constraints, there may inevitably be some shortcomings and errors
in the book. I appreciate any criticism and suggestions from readers.

We sincerely hope that this book will offer valuable knowledge and inspiration,
as well as contribute to the ongoing development of research and applications
in DNA computing. I also look forward to engaging in in-depth discussions
with readers and colleagues, collectively fostering the advancement of biological
computing.

Beijing, China Jin Xu
February 7, 2025

Declarations

Competing Interests The author has no competing interests to declare that are
relevant to the content of this manuscript.

xi

Contents

1 Introduction . 1
1.1 Background of the Emergence of Biological Computation 1
1.2 General Definition and Classification of Computers 4
1.3 Significance and Research Progress of Biological Computing. 5
References . 8

2 Graphs and Computational Complexity . 9
2.1 Graph Theory Basics . 9

2.1.1 Definition and Types of Graphs . 9
2.1.2 Degree Sequence of a Graph . 15
2.1.3 Graph Operations . 16
2.1.4 Graph Isomorphism . 20
2.1.5 Matrices of Graphs . 22
2.1.6 Graph Coloring . 25

2.2 Turing Machine. 31
2.2.1 The Founder of the Turing Machine: Turing 31
2.2.2 Turing Machine . 33
2.2.3 Computability . 36
2.2.4 Computational Complexity . 37

References . 44

3 Biological Computing: Data . 47
3.1 DNA Molecules . 47

3.1.1 Deoxyribonucleic Acid . 48
3.1.2 DNA Molecular Structure . 50
3.1.3 Types of DNA Molecules . 52
3.1.4 Characteristics of DNA Molecules . 58
3.1.5 DNA Biochemical Reactions . 62

3.2 RNA Molecules . 64
3.2.1 Nucleotides . 65
3.2.2 RNA Molecular Structure . 67
3.2.3 Types of RNA Molecules . 68

xiii

xiv Contents

3.3 Protein Molecules . 69
3.3.1 Protein Structure . 69
3.3.2 Protein Classification . 71
3.3.3 Detection Technology . 72

References . 73

4 Biological Computing Operators: Enzymes and Biochemical
Operations . 75
4.1 Commonly Used Enzymes in Biological Computing 75

4.1.1 Restriction Endonucleases . 75
4.1.2 Polymerase . 76
4.1.3 Ligase . 81
4.1.4 Modification Enzymes. 83
4.1.5 Nucleases . 83

4.2 Biochemical Operations in Biocomputing . 84
4.2.1 Synthesis of DNA Molecules . 84
4.2.2 Cutting, Connecting, and Pasting of DNA Molecules 85
4.2.3 DNA Recombination Technology . 88
4.2.4 Denaturation and Hybridization . 88
4.2.5 Amplification of DNA Molecules . 89
4.2.6 Separation and Extraction of DNA Molecules 89
4.2.7 Detection and Reading of DNA Molecules 91
4.2.8 Other Biochemical Operation Techniques for

Biological Computation . 93
4.2.9 New Biochemical Operations and Techniques

for Biological Computing . 95
4.2.10 New Instruments Involved in Biological Computing 99

4.3 Key Technology of Biological Computing: Gel
Electrophoresis . 108
4.3.1 Basic Principles . 109
4.3.2 Gel Electrophoresis . 110
4.3.3 Immunoelectrophoresis. 111
4.3.4 Capillary Electrophoresis . 112
4.3.5 Dielectrophoresis . 113
4.3.6 Isotachophoresis . 114

4.4 Key Technology in Biological Computing: Polymerase
Chain Reaction . 115
4.4.1 The Journey of PCR Invention . 116
4.4.2 Basic Principles . 117

References . 124

5 DNA Coding Theory and Algorithms . 129
5.1 Introduction . 129

5.1.1 An Overview of the Advancement in DNA
Coding Design . 131

5.1.2 Organization . 133

Contents xv

5.2 DNA Coding Problem. 133
5.2.1 Constraints in DNA Coding Design . 134
5.2.2 DNA Coding Problem and Its Mathematical Model 141
5.2.3 Classification of DNA Coding Algorithms 142

5.3 Counting DNA Coding Sequences Based on GC Content 143
5.3.1 Counting Theory for Designing DNA Sequences 144
5.3.2 DNA Coding Design with Identical GC Content 149

5.4 Template Method . 150
5.4.1 Preliminaries for Template Method . 150
5.4.2 Thermodynamic Stability of DNA Codes 154
5.4.3 Optimization of Template Sets . 154

5.5 Multi-Objective Optimization Method . 156
5.5.1 Optimization Model for DNA Coding Design 156
5.5.2 Multi-Objective Evolutionary Algorithm for

DNA Coding Design . 157
5.5.3 Multi-Objective Evolutionary Algorithms for

DNA Code Design . 159
5.6 Implicit Enumeration Method . 160

5.6.1 Coding Algorithm . 161
5.6.2 Application of Implicit Enumeration Coding Method 162

References . 164

6 Enumerative DNA Computing Model . 169
6.1 DNA Computing Model for the Directed Hamiltonian

Path Problem . 169
6.2 DNA Computing Model of Satisfiability Problem. 172
6.3 DNA Computing Model of the Maximum Clique and

Maximum Independent Set Problem of the Graph 176
6.4 DNA Computing Model for the 0-1 Programming Problem 178
6.5 DNA Computing Model for the Graph Vertex

Coloring Problem . 180
References . 183

7 Non-enumerative DNA Computation Model for Graph
Vertex Coloring . 185
7.1 Basic Idea of The Non-enumerative DNA Computing Model 185
7.2 Biological Implementation of The Non-enumerative

DNA Computing Model . 186
7.2.1 Biological Operation Steps . 186
7.2.2 Case Analysis and Related Biochemical Experiments 187

7.3 Analysis of Non-enumerative DNA Computing Model 196
7.4 Other Non-enumerative DNA Computing Models 197
References . 198

xvi Contents

8 Parallel Vertex Coloring DNA Computing Model . 201
8.1 Model and Algorithm . 201

8.1.1 Subgraph Partitioning and Determination of
Bridge Vertices. 202

8.1.2 Subgraph Vertex Sorting and Determination of
Color Set of Each Vertex in Subgraph . 205

8.1.3 Encoding of DNA Sequences . 207
8.1.4 Determine the Calculation Probe According to

the Probe Diagram . 208
8.1.5 Initial Solution Space Construction . 209
8.1.6 Non-solution Deletion . 210
8.1.7 Subgraph Merging and Non-solution Deletion. 211
8.1.8 Solution Detection . 211

8.2 Specific Example . 211
8.2.1 Subgraph Partitioning and Color Set Determination 211
8.2.2 Encoding . 212
8.2.3 Construction of Initial Solution Space . 212
8.2.4 Subgraph Non-solution Deletion. 212
8.2.5 Subgraph Merging and Non-solution Deletion. 215

8.3 Complexity Analysis . 217
8.3.1 Analysis of Reducing the Complexity of the

Initial Solution Space . 218
8.3.2 Enhancing Parallelism with PCR Technology 220

References . 224

9 Probe Machine . 225
9.1 Background of the Probe Machine . 225
9.2 Principle of Probe Machine . 227

9.2.1 Analysis of Turing Machine Mechanism 227
9.2.2 Mathematical Model of the Probe Machine 228

9.3 Probe Machine Solves Hamilton Circle Problem 241
9.4 A Technology for Implementing a Connected

Probe Machine. 244
9.5 Transmissive Probe Machine and Biological Neural Network 248
9.6 Probe Machine Function Analysis. 249

9.6.1 Turing Machines Are a Special Case
of Probe Machines . 249

9.6.2 Can Turing Machines Simulate Probe Machines? 250
9.6.3 Advantages of the Probe Machine . 251

9.7 Conclusion . 251
References . 252

10 DNA Algorithmic Self-Assembly . 255
10.1 DNA Tile Computation . 255

10.1.1 DNA Tile Types . 256
10.1.2 DNA Tile Calculation Example . 259

Contents xvii

10.2 Turing Equivalent Tile Calculation . 261
10.2.1 Mathematical Model of DNA Tile Calculation 261
10.2.2 Turing Equivalence of DNA Tile Computation 264

10.3 Programmable Tile Structure . 267
10.4 Single-Strand Tile Calculation. 268
10.5 Universal DNA Computer Based on SST . 272

10.5.1 Iterative Boolean Circuit Computing Model
Based on S ST . 273

10.5.2 Computation Model Based on Repeatable SST 275
10.6 DNA Origami Computation . 276

10.6.1 DNA Origami Technology . 277
10.6.2 Programmable Self-Assembly of DNA Origami 278
10.6.3 DNA Origami Surface Computing. 279
10.6.4 Computable DNA Origami Structure . 280

References . 282

11 RNA Computing . 285
11.1 Computational Characteristics of RNA Molecules 285
11.2 RNA Computation Model for Solving NP-Complete Problems . . . 286
11.3 Related Research on RNA Computing in Logic Gates

and Logic Circuits . 288
11.3.1 Prediction and Design of RNA Molecular Structure 289
11.3.2 RNA Computing Based on Molecular Automata 289
11.3.3 RNA Computing Combined with RNA

Interference Technology (RNAi) . 291
11.3.4 RNA Computation Combining Ribozyme and

Aptamers Technology . 293
11.3.5 RNA Computation Combining CRISPR/Cas

Gene Editing Technology . 294
11.3.6 RNA Computing Combined with Synthetic

Biology Techniques . 296
References . 298

12 Protein Computing . 301
12.1 Introduction . 301
12.2 Building Logic Calculators Based on Proteins . 302

12.2.1 Enzyme-Mediated Logic Calculators . 302
12.2.2 Non-enzyme Mediated Logic Operators 312
12.2.3 Logic Calculators Based on Artificially

Designed Proteins . 315
12.3 Building Arithmetic Calculators Based on Proteins 315
12.4 Solving NP-complete Problems Based on Protein Molecules 317
12.5 Protein Storage . 318

12.5.1 Protein Storage Based on Bacteriorhodopsin 319
12.5.2 Protein-Based Memory Resistors . 320

References . 326

Chapter 1
Introduction

Biological computation refers to the computation that uses biological macro-
molecules as data for information processing. Biological macromolecules mainly
include DNA, RNA, and proteins, and consequently, biological computation can
be divided into DNA computation, RNA computation, and protein computation.
Limited by the level of biochemical operation technology, biological computation
research is currently mainly focused on DNA computation. This book focuses on
DNA computation and also gives a certain introduction to RNA computation and
protein computation. This chapter introduces the background of the emergence of
biological computation, research significance, and research progress.

1.1 Background of the Emergence of Biological Computation

The advancement of human civilization is intricately connected to the evolution
of computational tools designed for information processing. These tools reflect
the level of human development and act as primary drivers of societal progress.
Throughout history, humanity has traversed several distinct eras: the Stone Age,
Iron Age, Steam Age, Electrical Age, Information Age, and now the era of Artificial
Intelligence. In these epochs, computational tools have progressed from simple to
complex and from basic to sophisticated forms. This journey began with methods
like knotting records and using counting rods, evolving through devices such as
the abacus, slide rules, and mechanical computers, ultimately leading to electronic
computers. The electronic computer itself has transformed from vacuum tubes
and transistors to personal computers (PCs) and today’s supercomputers. Each
stage of this development has played a crucial role in advancing human society
throughout various historical periods. Figure 1.1 provides a visual representation of
the evolution of computational tools.

Indeed, the human biological nervous system has consistently been the most
effective tool for processing information. This system has evolved over time, result-

© The Author(s) 2025
J. Xu, Biological Computing, https://doi.org/10.1007/978-981-96-3870-3_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-96-3870-3protect T1	extunderscore 1&domain=pdf
https://doi.org/10.1007/978-981-96-3870-3_1
https://doi.org/10.1007/978-981-96-3870-3_1
https://doi.org/10.1007/978-981-96-3870-3_1
https://doi.org/10.1007/978-981-96-3870-3_1
https://doi.org/10.1007/978-981-96-3870-3_1
https://doi.org/10.1007/978-981-96-3870-3_1
https://doi.org/10.1007/978-981-96-3870-3_1
https://doi.org/10.1007/978-981-96-3870-3_1
https://doi.org/10.1007/978-981-96-3870-3_1
https://doi.org/10.1007/978-981-96-3870-3_1
https://doi.org/10.1007/978-981-96-3870-3_1

2 1 Introduction

Fig. 1.1 The development process of human computational tools

Fig. 1.2 The evolution of the human nervous system

ing in a progressively more complex brain. Figure 1.2 presents a schematic diagram
that illustrates the evolution of the human nervous system. The human brain, as an
information-processing system, not only evolves itself but also designs and creates
all other human information-processing tools. Among these, the electronic computer
emerges as the most advanced computational device developed by humanity.

In today’s society, the electronic computer is the core tool for information
processing, deeply intertwined with every aspect of human life. However, the com-
putational model employed by electronic computers is based on the Turing machine,
which functions through serial computation. This limitation means that electronic
computers are not well-equipped to tackle NP-complete problems effectively. These
problems are characterized by a computational demand that increases exponen-
tially with the problem’s size. Furthermore, as the manufacturing technology for
electronic computers has reached its limits, this has prompted a search for new
computational models. The aim is to develop innovative computational tools capable
of overcoming the challenges posed by NP-complete problems, which serve as
obstacles to societal advancement.

1.1 Background of the Emergence of Biological Computation 3

In recent decades, scientists have delved into various fields to pursue innovative
computational models. They have introduced several approaches, including artificial
neural networks that emulate the brain’s information processing, evolutionary
computation that reflects genetic mechanisms, biological computation grounded
in the properties of biological macromolecules, quantum computation harnessing
quantum characteristics, and optical computation utilizing the properties of light.
As these computational models advance and reach a certain level of maturity, they
often lead to the development of corresponding computing systems. Therefore, it
is appropriate to compare the current landscape of non-traditional computing to a
“Warring States Period,” with biological computation serving as a key player in this
evolving arena.

Biological computation primarily focuses on addressing NP-complete problems.
Accordingly, Chap. 2 provides a comprehensive overview of fundamental concepts,
including basic notations and terminologies in graph theory, the Turing machine
model, and computational complexity theory as grounded in the Turing machine
framework.

The origins of biological computation can be traced back to Richard P. Feynman
[1], who proposed the concept of a sub-micron scale computer in 1961. In 1973,
Charles H. Bennett [2] introduced the idea of a Turing machine that operates
through enzymatic catalysis. In the 1980s, researchers developed a binary molecular
computing model that employed proteins for information processing, a field known
as protein computing. This model was inspired by the advancements in electronic
computers, with the goal of using molecules to create controllable “binary” states
that represent the binary values of “0” and “1.” A comprehensive discussion on
protein computing will be provided in Chap. 12.

In 1994, Leonard Adleman [3] introduced a DNA computing model to tackle the
Hamiltonian path problem in a directed graph with seven vertices. This model oper-
ates on the principle of using DNA molecules as “data” while employing biological
enzymes and PCR instruments as “operators” to derive the solution to the problem,
as elaborated in Chap. 6. Additionally, a significant factor in the emergence of the
DNA computing model was the human genome sequencing project. The execution
of this extensive project has fueled rapid advancements in genetic engineering,
molecular biology theory, and biochemical operation technology, especially in DNA
sequencing technology. This progress has cultivated a fertile environment for the
emergence, realization, and development of DNA computing, establishing a strong
foundation for research and development in DNA computers.

This book explores the significant achievements in DNA computing research,
covering essential topics such as fundamental theory, experimental operations, and
computing models, all of which will be elaborated upon in Chaps. 3, 4, 5, 6, 7,
and 8. References [4–8] include several early review articles by the author in
this field. Throughout the research on DNA computing, a fully parallel computing
model known as the probe machine [9] will be examined in Chap. 9, including
its theoretical framework and practical applications. Chapter 10 will delve into
DNA molecule self-assembly technology, which has emerged from DNA computing

4 1 Introduction

investigations. Lastly, Chap. 11 will address recent advancements in the RNA
computing model.

1.2 General Definition and Classification of Computers

The definition of an electronic computer does not adequately encompass the broader
concept of a computer. This section provides a formal definition of a computer and
offers a classification based on this definition.

In straightforward terms, a computer is a machine designed according to
a computing model that demonstrates a certain level of universality. This can
involve either identifying materials that are compatible with this computing model
or developing a computing model based on specific types of materials. Once
the appropriate materials and computing model are determined, the development
process necessitates the design of a system structure, commonly referred to as the
architecture. With this in mind, we can formally define a computer as follows:

Computer = Computing Model + Architecture + Implementation Material.
For instance, the underlying computing model of an electronic computer is

the Turing machine. The materials used for implementation consist of electronic
components such as diodes, triodes, resistors, and capacitors. The architecture
adheres to the von Neumann model, which comprises five key components. The first
part is the arithmetic unit, which is responsible for executing various arithmetic and
logical operations and facilitating data transfer essential for data processing. The
second component is the controller, which oversees the execution of programs and,
in conjunction with the arithmetic unit, forms the Central Processing Unit (CPU)
of the computer. The third component is the memory, which stores programs and
data. The fourth component is the input devices, including the mouse and keyboard,
which are used to enter data or programs into the computer. The last component is
the output devices, such as monitors and printers, which display the results of data
processing and program execution to the user. These five fundamental components
work together under the control of instructions, enabling data transfer among them.

John von Neumann designed the electronic computer, but the most esteemed
award in the field of computers today is the “Turing Award,” not the “von Neumann
Award.” This distinction emphasizes the significance of the computing model within
modern computers.

Presently, computers and computational models are commonly named based
on the materials they employ or the scale of materials. For example, we refer
to electronic computers and biological computers (which include DNA, RNA,
and protein computers) according to their respective materials, while quantum
computers are named based on the scale of materials. However, the essence or
core of a computer truly resides in its computing model, which renders the naming
conventions for these computer types somewhat questionable. Nonetheless, it is
worth noting that whether in practical applications or experimental contexts, all of
these computers utilize Turing machines as their foundational computing model.

1.3 Significance and Research Progress of Biological Computing 5

From this standpoint, it is reasonable to categorize computers by the materials or
scales they involve.

The previous classification of computers was based on their implementation
materials. Now, we categorize computers into four main types based on computing
models.

(1) Serial computing models: These models process information one step at a
time. A prime example is the Turing machine, which represents a standard
serial computing model. Many early mechanical computers operated using this
model.

(2) Fully parallel computing models: An illustration of this type is the probe
machine discussed in Chap. 9. A key characteristic of fully parallel computing
models is their operation in multiple dimensions, typically three-dimensional.

(3) Serial/parallel computing models: An example of this category is the way the
human brain processes information. The brain comprises five parallel sensory
systems; however, each system functions serially during the information pro-
cessing stage. This model highlights the complexity and intelligence inherent
in serial/parallel processing.

(4) Intelligent computers: This book does not explore intelligent computers in
detail, and it provides its formal definition for clarity.
Intelligent Computer = Computing Model + Architecture + Implementa-
tion Material + Basic Intelligence Set

1.3 Significance and Research Progress of Biological
Computing

Since 1994, DNA computing has built a 30-year history. Throughout this period,
it has largely focused on tackling NP-complete problems, aiming to advance the
development of DNA computers. Moreover, the DNA self-assembly technology that
emerged from this research has greatly enhanced the field of DNA nanodevices.
These nanodevices show significant potential for nanorobot applications, especially
in tumor diagnosis and drug delivery.

The key reason DNA computing distinguishes itself in the field of biological
computing is that the manipulation of DNA molecules and associated biochemical
technologies is more readily achievable than that of RNA and proteins. Additionally,
DNA computing presents four noteworthy advantages (see references [4–8]):

(1) High parallelism. In DNA computing, the “data” is represented by DNA
molecules, while the “operations” involve fundamental processes such as
unwinding DNA double strands and connecting or cutting single strands.
These operations can occur simultaneously, allowing for significant parallel
processing capabilities. The vast quantity of DNA molecules enhances the
parallelism of DNA computing even further.

6 1 Introduction

(2) Impressive information storage capacity. The average length of the four bases
that comprise DNA strands (adenine, cytosine, guanine, and thymine) is merely
0.34 nm. For example, a DNA strand consisting of 1000 bps1 measures only
340 nm. It is estimated that 1 cubic meter of DNA can store approximately 10
trillion trillion bits of binary data, which far surpasses the total storage capacity
of all electronic computers combined around the world.

(3) Extremely low energy consumption. DNA computing consumes energy at an
incredibly low rate. It is roughly estimated that the energy required to solve
a problem using DNA computing is only one billionth of the energy that an
electronic computer would expend for the same calculation.

(4) Diverse range of operations. DNA computing is characterized by a wide
array of operations, including the denaturation of double-stranded DNA, the
connection of single-stranded DNAs, the cutting of DNA molecules into
fragments, and the replication of DNA strands (polymerase). It also includes
techniques from established biochemical methods, such as PCR amplification
and electrophoresis.

These compelling advantages of DNA computing have drawn the interest of
researchers across various disciplines, including bioengineering, computer science,
mathematics, physics, chemistry, control science, and information technology.

The objective of studying DNA computing is to advance the development of prac-
tical DNA computers. Current research shows that this field is steadily approaching
real-world applications. For example, when searching for all paths between two
vertices in a weighted graph, researchers can use DNA strands that correspond to
these two vertices as primers and conduct a PCR amplification operation to retrieve
all possible paths. Another instance of this research occurred in 2002 when Braich et
al. [10] tackled the SAT problem, conducting a search that involved 220 .possibilities.
Furthermore, reference [11] established a DNA computing model to solve the graph
vertex coloring problem, successfully identifying all solutions for a 61-vertex 3-
coloring challenge, with the number of searches reaching 359 .. This represents the
largest search scale achieved in biological computing to date and further illustrates
the vast potential of DNA computing.

While there are numerous NP-complete problems, in 1971, Stephen Cook
established that all NP-complete problems can be reduced to one another in
polynomial time (for which Cook earned the Turing Award in 1982). This results in
the ability to transform any NP-complete problem into the graph coloring problem,
a typical NP-complete problem. Recent advancements in DNA computing have
demonstrated significant potential for effectively addressing the graph coloring
problem, showcasing the advantages of this methodology for tackling NP-complete
challenges more broadly. Every progress in solving NP-complete problems can lead

1 A base pair (bp) is a chemical structure formed by hydrogen bonds between the bases on one
strand of a nucleic acid molecule and the complementary bases on the other strand in the double
helix structure. It is commonly used as a unit to represent the length of DNA or double-stranded
RNA. The commonly used units are kilobase pairs (kbp) and megabase pairs (Mbp).

1.3 Significance and Research Progress of Biological Computing 7

to far-reaching benefits across various sectors of society. For instance, it could result
in breakthroughs in areas such as protein structure prediction, train scheduling,
and flight path planning. Furthermore, there is optimism that advancements in
this domain could help resolve some of the more difficult issues in basic science,
particularly in mathematics, operations research, and theoretical computer science.

The research on DNA computing can be categorized into five distinct stages
based on the characteristics of the model.

(1) Enumeration stage (1994–2005). This eleven-year period marked the beginning
of DNA computing. During this time, researchers were actively exploring
various facets of the field. They concentrated on addressing complex NP-
complete problems, investigating how to develop computational models that
utilized the unique properties of DNA molecules. Key areas of focus included
coding DNA strands, conducting biochemical experiments, and implementing
techniques for solution detection—essentially learning how to extract solutions
from the biochemical reaction pool. At this stage, many scholars mistakenly
believed that DNA computing could capitalize on the small size of DNA
molecules to exchange space for time. An overview of the DNA computing
models from this period will be provided in Chap. 6.

(2) Non-enumeration stage. This stage commenced in 2006. It is clear that if the
enumeration method were employed to solve the 4-coloring problem for a
graph with 200 vertices, the required DNA molecular weight would surpass
that of the Earth. Consequently, DNA computing must adopt a non-enumerative
approach. In 2006, the author’s team introduced the first non-enumeration graph
coloring DNA computing model. A detailed discussion of non-enumeration
DNA computing models will be provided in Chap. 7.

(3) Parallel DNA computing model. This model was initiated in 2007. The author’s
team proposed a parallel DNA computing model based on the non-numeration
model. The primary innovation of this model is parallelism: it divides a given
graph into several subgraphs and determines the coloring for each subgraph.
A parallel PCR continuous deletion technique is introduced to eliminate non-
solutions during this process. Ultimately, the solutions from all subgraphs
are integrated, similar to removing non-solutions across the entire graph. A
comprehensive parallel DNA computing model introduction will be presented
in Chap. 8.

(4) Probe machine. This concept emerged in 2002. While developing the graph
coloring DNA computing model, a novel method was discovered that enables
the extraction of all k-colorings from a given graph using a single operation,
creating a new type of fully parallel computing model—the probe machine.
This model encompasses both biological and electronic implementations, along
with various applications, which will be outlined in Chap. 9.

8 1 Introduction

References

1. Feyman, R.P.: There’s plenty of room at the bottom. In: Minaturization, D.H. Gilbert (ed.), pp.
282–296. Reinhold, New York (1961)

2. Bennett, C.H.: On constructing a molecular computer. IBM J. Res. Dev. 17, 525–532 (1973)
3. Adleman, L.M.: Molecular computation of solutions to combinatorial problems. Science

266(5187), 1021–1024 (1994)
4. Xu, J., Zhang, L.: Principles, Progress, and Challenges of DNA Computing (I): Biological

Computing Systems and Their Applications in Graph Theory. J. Comput. Sci. 26(1), 1–11
(2003)

5. Xu, J., Huang, B.: DNA Computing: Principles, Progress, and Challenges (II) The Formation
of Computer “Databases”—Synthesis of DNA Molecules. J. Comput. Sci. 28(10), 1583–1591
(2005)

6. Xu, J., Zhang, S., Fan, Y., Guo, Y.: Principles, Progress, and Challenges of DNA Computing
(III): Data Structures and Properties in Molecular Computing. J. Comput. Sci. 30(6), 869–880
(2007)

7. Xu, J., Tan, G., Fan, Y., Guo, Y.: DNA Computing: Principles, Progress, and Challenges (IV):
On DNA Computing Models. J. Comput. Sci. 30(6), 881–893 (2007)

8. Xu, J., Li, F.: Principles, Progress, and Challenges of DNA Computing (V): Fixation
Technology of DNA Molecules. J. Comput. Sci. 22, 2283–2299 (2009)

9. Xu, J.: Probe Machine. IEEE Trans. Neural Netw. Learn. Syst. 27(7), 1405–1416 (2016)
10. Braich, R.S., Chelyapov, N., Johnson, C., et al.: Solution of a 20-variable 3-SAT problem on a

DNA computer. Science 296(5567), 499–502 (2002)
11. Xu, J., Qiang, X., Zhang, K., et al.: A DNA computing model for the graph vertex coloring

problem based on a probe graph. Engineering 4(1), 61–77 (2018)

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Chapter 2
Graphs and Computational Complexity

Chapter 1 pointed out that NP-complete problems are a “stumbling block” hindering
the development of today’s technology. Due to the natural advantage of DNA
computing’s parallelism in solving NP-complete problems, research on DNA com-
puting over the past decades has mainly focused on solving NP-complete problems.
Considering that many NP-complete problems are graph theory problems, this
chapter first introduces some basic knowledge in graph theory; then, it gradually
reveals the true nature of NP-complete problems and introduces some related
theories of NP-complete problems, especially computational complexity theory.

2.1 Graph Theory Basics

This section offers essential definitions, notations, and theoretical concepts of graph
theory that are employed throughout this book.1 The topics discussed include
the definition and types of graphs, the degree sequence, graph operations, graph
isomorphism, matrix representations of graphs, and the principles of graph coloring
theory.

2.1.1 Definition and Types of Graphs

For a positive integer k ., let X(k)
. denote the collection of all k .-element subsets of

a non-empty set X .. A graph is defined as follows: Given a non-empty set V . and
its 2-element subset E ⊆ V (2)

., the ordered pair (V ,E). is referred to as a graph,

1 This section is adapted from Chap. 1 of the author’s book: Theory of Maximum Planar Graphs:
Structure-Construction-Coloring [1], with appropriate modifications and enhancements for the
specific requirements of the present book.

© The Author(s) 2025
J. Xu, Biological Computing, https://doi.org/10.1007/978-981-96-3870-3_2

9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-96-3870-3protect T1	extunderscore 2&domain=pdf
https://doi.org/10.1007/978-981-96-3870-3_2
https://doi.org/10.1007/978-981-96-3870-3_2
https://doi.org/10.1007/978-981-96-3870-3_2
https://doi.org/10.1007/978-981-96-3870-3_2
https://doi.org/10.1007/978-981-96-3870-3_2
https://doi.org/10.1007/978-981-96-3870-3_2
https://doi.org/10.1007/978-981-96-3870-3_2
https://doi.org/10.1007/978-981-96-3870-3_2
https://doi.org/10.1007/978-981-96-3870-3_2
https://doi.org/10.1007/978-981-96-3870-3_2
https://doi.org/10.1007/978-981-96-3870-3_2

10 2 Graphs and Computational Complexity

denoted by G.. In this context, V . is identified as the vertex set, while E . is termed the
edge set of graph G.. The components of V . and E . are recognized as the vertices and
edges of G., respectively. The notation uv . is frequently utilized to signify the edge
{u, v} ∈ E ., with vertices u. and v . being designated as the endpoints of this edge.
If e = uv . is an edge of G. (i.e., uv ∈ E .), its two endpoints u. and v . are described
as being adjacent. Additionally, vertex u. and vertex v . are considered incident with
the edge e., and vice versa. When two edges share a common vertex, they are said to
be adjacent each other. Given a vertex v ∈ V ., its neighborhood, denoted NG(v).

(or simply N(v).), is the set of all vertices that are adjacent to v . in the graph. Let
I ⊂ V .. If no two vertices in I . are adjacent, then I . is called an independent set .

of the graph. Likewise, let M ⊂ E .. If no two edges in M . are adjacent, then M . is
referred to as a matching or an edge − independent set . of the graph. For any
specified graph G., the vertex set and edge set of G are commonly denoted as V (G).

and E(G)., respectively.

Remark 2.1 Note that the vertex set V and edge set E in a graph have no repeated
elements (as repetition is not permitted in a set) and V (2)

. is a set composed of
unordered 2-element subsets of V . Consequently, there are no repeated edges in
E, the two endpoints of each edge in E are different, and the notations uv . and vu.

represent the same edge. Such graphs are called simple undirected graphs.

Let G = (V ,E). be a graph. If both V and E are finite, then G is called a finite
graph; otherwise, an infinite graph. The graphs mentioned in this book all refer to
finite graphs. Usually, the number of vertices in G is called the order of G, and the
number of edges in G is called the size of G. An (n,m).-graph is a graph with order
n and size m.

A graph G. can be represented as a geometric figure in a plane, with each
vertex depicted as a small point and each edge illustrated as a line connecting
its two endpoints. This graph depiction is called G.’s graphical representation.
Such representations enhance our understanding of the graph’s structure, providing
clearer insight into its properties. This capability is one of the compelling aspects of
graph theory.

Let G = (V ,E). be a n-order simple graph. If E = V (2)
., then G is called

an n-order complete graph, denoted as Kn .; Fig. 2.1a,b presents two different
graphical representations of the 4-order complete graph K4 .. The characteristic of
a complete graph is that every pair of vertices are adjacent. The exact opposite of
a complete graph is: if every pair of vertices in G are not adjacent, that is, E = ∅.,
then G is called an n-order null graph, denoted as Nn .. When not considering
the number of vertices, it is usually called an empty graph or a null graph. Let
V = {v1, v2, . . . , vn}.. If E = {v1v2, v2v3, . . . , vn−1vn}., then G is called a path
of length n − 1. or an (n − 1).-path, denoted as Pn−1 .; see Fig. 2.1c a graphical
representation of P4 .. If E = {v1v2, v2v3, . . . , vn−1vn, vnv1}., then G is called n-
cycle, denoted as Cn .; see Fig. 2.1d a graphical representation of C4 ..

Remark 2.2 In a graphical representation of a graph, the geometric characteristics
of vertices and edges are not of primary importance. Specifically, the dimensions of

2.1 Graph Theory Basics 11

Fig. 2.1 Diagrams of K4 ., P4 ., and C4 .: (a) and (b) Two graphical representations of K4 .; (c) a
graphical representation of P4 .; (d) a graphical representation of C4 .

Fig. 2.2 Petersen graph and its different graph representations

the vertices—whether they are round or flat, hollow or solid—and the attributes of
the edges, including their length, thickness, and straightness, do not influence the
representation.

Example 2.1 Let G = (V ,E). be a graph with V = {v1, v2, . . . , v10}. and E =
{v1v2, v2v3, v3v4, v4v5, v1v5, v6v8, v8v10, v10v7, v7v9, v9v6, v1v6, v2v7, v3v8,.

v4v9, v5v10}.. This graph is known as the classic Petersen graph, as illustrated
in Fig. 2.2a. Figure 2.2b and c provides two different graphical representations of
this graph.

A graph G is called a labeled graph if each vertex in G is assigned a label;
otherwise, it is referred to as a non-labeled graph. The graph shown in Fig. 2.2a is
a labeled graph, while the graphs in Fig. 2.2b and c are non-labeled graphs.

In the definition of a simple graph G = (V ,E)., the elements in the edge set E .

are unique, meaning no two edges can be identical. When this restriction is relaxed,
allowing for multiple occurrences of the same edge in E ., we introduce the concept
of having i(> 1). edges connecting a pair of vertices in G.. These edges are referred
to as multiple edges (or parallel edges). Graphs that contain multiple edges are
classified as multigraphs. To further clarify, we can extend the set V (2)

. into a new
set V (2)= . by allowing repeated elements. In this context, each element in V (2)= . is
also an element of V (2)

. and can appear an arbitrary number of times. Then, the
ordered pair (V ,E=). represents a multigraph and is denoted as G= ., and the repeated
elements in E= . are multiple edges, where E= ⊆ V (2)= ..

Example 2.2 Let G= = (V ,E)., where V = {v1, v2, v3, v4, v5}. and E= = {ei |i =
1, 2, . . . , 11}. with e1 = e2 = v1v5 ., e3 = e4 = e5 = v1v2 ., e6 = v1v4 ., e7 = v1v3 .,

12 2 Graphs and Computational Complexity

Fig. 2.3 Illustration of multigraphs, basic graphs, and edge-weighted graphs: (a) A multigraph
G= .; (b) the basic graph B(G). of G= .; (c) the edge-weighted graph corresponding to G= .

Fig. 2.4 A pseudograph

e8 = e9 = e10 = e11 = v3v4 .. Then, G= . is a multigraph; Fig. 2.3a provides a
graphical representation of it.

The basic graph of a multigraph G= = (V ,E)., denoted as B(G)., is a simple
graph vertex set V , where two vertices are adjacent in B(G). if and only if they
are connected by at least one edge in G= .. Figure 2.3b provides a graphical
representation of the basic graph of the multigraph shown in Fig. 2.3a.

The definitions of simple graphs and multigraphs require that each edge connect
two distinct vertices. When this restriction is removed, edges can connect to the
same vertex, which we refer to as loops. Graphs that contain loops are classified
as pseudographs. In more detail, we extend the sets V (2)

. (and V (2)= .) to a new
set V

(2)
O ., which permits elements from the set {{vi, vi}|i = 1, 2, . . . , n}. to occur

an arbitrary number of times, where V = {v1, v2, . . . , vn}.. Then, the ordered pair
(V ,EO). represents a pseudograph, denoted by GO ., where EO ⊆ V

(2)
O .. The element

{vi, vi} ∈ EO . for i ∈ {1, 2, . . . , n}. corresponds to a loop.

Example 2.3 Figure 2.4 illustrates a pseudograph GO = (V ,EO). with V =
{v1, v2, v3, v4}. and EO = {ei |i = 1, 2, 3, 4, 5, 6}., where e5 = v3v3 . and e6 = v4v4 .

are loops.

Remark 2.3 Multigraphs must contain multiple edges, and pseudographs must
contain loops.

For a multigraph G= ., labeling each edge e in its basic graph B(G). with the
number of multiple edges corresponding to e in G= . is equivalent to assigning
weights to the edges of B(G).. For example, in the multigraph illustrated in Fig. 2.3a,
the edge-weight function ω ., defined based on this method, is ω(v1v5) = 2.,
ω(v1v2) = 3., ω(v1v3) = ω(v1v4) = 1., and ω(v3v4) =.; Fig. 2.3c illustrates
this weight assignment for edges. More generally, an edge-weighted graph G.

can be represented as a 3-tuple (V ,E, ω)., where (V ,E). constitutes a simple

2.1 Graph Theory Basics 13

graph and ω : E → R. is a function that assigns a weight to each edge ei .

in the edge set E = {e1, e2, . . . , em}.. The collection of weights, represented as
ω(E) = (ω(e1), ω(e2), . . . , ω(em))., is termed the edge-weighted vector. For
instance, the edge-weighted vector for the graph shown in Fig. 2.3c is given by
(ω(v1v2), ω(v1v3), ω(v1v4), ω(v1v5), ω(v3v4)) = (3, 1, 1, 2, 4)..

Edge-weighted graphs have good application backgrounds, such as transporta-
tion networks and biological neural networks. In transportation networks, vertices
represent cities, edges represent whether there are roads, railways, air routes, or
sea routes between two cities, and the weight of the edges represents the distance
between the two cities (including road distance, railway distance, flight distance,
and sea distance, etc.). In biological neural networks, vertices represent neurons
of a biological body (such as a human), edges represent synapses between two
neurons, and the edges’ weight represents the corresponding synapses’ thickness.
The human brain has about 1012

. neurons and 1015 ∼ 1016
. synapses, but research

on the thickness of synapses is relatively less, and in-depth research in this area is
crucial for brain science research.

A vertex-weighted graph is defined as a 3-tuple (V ,E, ω)., where (V ,E).

represents a simple graph and ω : V → R. is a function that assigns
a weight to each vertex. The collection of weights, denoted as ω(V) =
(ω(v1), ω(v2), . . . , ω(vn))., is referred to as the vertex-weighted vector. In
this context, ω(vi). (for i ∈ {1, 2, . . . , n}.) signifies the weight of the vertex
vi ., with V = {v1, v2, . . . , vn}.. For instance, consider the graph shown in
Fig. 2.5, which has V = {v1, v2, . . . , v12}. and the vertex-weighted vector
ω(V) = (ω(v1), ω(v2), . . . , ω(v12)) = (1, 2, 3, 4, 1, 3, 2, 4, 1, 4, 3, 2).. In this
graph, each vertex is assigned a weight of 1, 2, 3, or 4, and it is important to
note that the two endpoints of each edge possess different weights. Thus, this type
of vertex-weighted assignment can be interpreted as a form of vertex coloring in
the graph, where the weight represents the color and the set of colors is {1, 2, 3,
4}. Like edge-weighted graphs, vertex-weighted graphs also have a wide range
of applications, including traffic signal light design, scheduling tasks, and route
planning problems.

A more universally applicable graph form is a mixed-weighted graph (often
called a weighted graph). This can be expressed as a 4-tuple (V ,E, ωe, ωv)., where
(V ,E). represents a simple graph, (V ,E, ωe). is an edge-weighted graph, and
(V ,E, ωv). is a vertex-weighted graph.

Fig. 2.5 A vertex-weighted
graph

1

2 3

2

3

3 1

2

4

14 4

11

22 33

22

33

33 11

22

44

1144 44

14 2 Graphs and Computational Complexity

In summary, undirected graphs can be categorized into four types, including
simple graphs, multigraphs, pseudographs, and weighted graphs. Furthermore,
weighted graphs are subdivided into three distinct categories: edge-weighted graphs,
vertex-weighted graphs, and mixed-weighted graphs.

Remark 2.4 Unless explicitly stated, all graphs referred to in this book are finite
simple undirected graphs.

In the definition of a graph, by changing the unordered pair in V (2)
. to an

ordered pair, one arrives at the concept of a directed graph. Given a non-empty
set V = {v1, v2, . . . , vn}., we define the set of all 2-element ordered pairs of V .

as V [2]
.. An ordered pair from vi . to vj . (where i /= j . and i, j ∈ {1, 2, . . . , n}.) is

represented as (vi, vj)., which can also be abbreviated as vivj .. For example, if we
have V = {v1, v2, v3}., the set of all 2-element ordered pairs can be expressed as
V [2] = {v1v2, v1v3, v2v1, v2v3, v3v1, v3v2}.. This framework allows us to similarly
define a directed graph based on the concept of V [2]

..
Let V . be a non-empty set and A ⊆ V [2]

.. The ordered pair (V ,A). is referred to
as a simple directed graph, denoted as D .. In this context, V . is called the vertex
set of D ., while A. is called the arc set of D .. The elements within V . are termed the
vertices of D ., and the elements in A. are called the arcs of D .. If a = uv ∈ A., then
a . denotes the arc from u. to v ., where u. serves as the tail of the arc and v . acts as the
head. In this context, we can also say that the arc a = uv . is incident with its tail u.

and head v .; we also say that u. is adjacent to v ., or that u. dominates v ..
In a directed graph, a pair of arcs such as uv and vu is known as symmetric

arcs. Let D = (V ,A). denote a directed graph. Its inverse, represented as D'
., is a

directed graph (V ', A'). where V ' = V . and A' = {uv|uv ∈ V [2] and uv /∈ A}..
The underlying graph of the directed graph D, denoted as U(D)., is an undirected
graph formed by replacing each arc in D with an undirected edge. Figure 2.6
illustrates three representations: (a) the directed graph D, (b) its inverse D'

., and
(c) its underlying graph U(D)..

A completely symmetric directed graph is a directed graph where each pair
of vertices is connected by exactly one pair of symmetric arcs. Figure 2.7 shows
the 5-order completely symmetric graph. A tournament graph is a directed graph
where each pair of vertices is connected by exactly one arc. In other words, a
tournament graph is a directed graph whose underlying graph is a complete graph.
The tournament graph is known for its good application background. Figure 2.7b
shows a 5-order tournament graph.

Fig. 2.6 A directed graph, its inverse and underlying graph: (a) D; (b) D' .; (c) U(D).

2.1 Graph Theory Basics 15

Fig. 2.7 (a) The 5-order
completely symmetric
directed graph and (b) the
5-order tournament graph

The directed graphs referenced above are classified as simple directed graphs.
Similar to the classification of undirected graphs, directed graphs can be categorized
into four types: simple directed graphs, multi-directed graphs, pseudo-directed
graphs, and weighted directed graphs. Moreover, weighted directed graphs can be
further divided into three categories: arc-weighted directed graphs, vertex-weighted
directed graphs, and mixed-weighted graphs.

This book primarily addresses undirected graphs, so this section offers only
a brief overview of the key concepts and classifications of directed graphs. For
a more thorough exploration of directed graph theory, please refer to reference
[2]. Additionally, for in-depth definitions, notation, and foundational theories
concerning undirected graphs, please consult references [3, 4].

2.1.2 Degree Sequence of a Graph

Let G = (V ,E). be a simple graph. For a vertex v ∈ V ., the number of edges incident
with v is called the degree of v, denoted as dG(v)., and represented by d(v). when
there is no confusion. Obviously,

.d(v) = |N(v)|. (2.1)

The maximum degree of the graph G, denoted as Δ(G)., refers to the maximum
degree of all vertices in G. The minimum degree of G, denoted as δ(G)., refers to
the minimum degree of all vertices in G. That is, Δ(G) = max{d(v)|v ∈ V }. and
δ(G) = min{d(v)|v ∈ V }.. If Δ(G) = δ(G) = k ., then G is called a k-regular
graph. We call a vertex with a degree of zero an isolated vertex and a vertex with a
degree of 1 a pendant vertex.

The degree sequence of a graph G = (V ,E)., denoted as π(G)., is a sequence
that consists of the degrees of all its vertices arranged in a specific order. Gener-
ally, this sequence is typically presented in either a monotonically increasing or
decreasing format. Let V = {v1, v2, . . . , vn}. and let di = d(vi). for i = 1, 2, . . . , n..
If the degrees are organized such that d1 ≥ d2 ≥ . . . ≥ dn ., then the degree
sequence can be expressed as the n.-tuple π(G) = (d1, d2, . . . , dn).. In certain
cases, increasing order is used to represent the degree sequence, which yields

16 2 Graphs and Computational Complexity

π(G) = (dn, dn−1, . . . , d1).. For example, the degree sequence of the graph shown
in Fig. 2.3b is (1,1,2,2,4) or (4,2,2,1,1).

The following conclusions regarding the degree sequence are evidently valid.

Theorem 2.1 Let G = (V ,E). be an (n,m).-graph, where with V =
{v1, v2, . . . , vn}.. Then,
(1) 0 ≤ d(vi) ≤ n − 1. for every i ∈ {1, 2, . . . , n}.;
(2) There exist two distinct i, j ∈ {1, 2, . . . , n}. such that d(vi) = d(vj).;

(3)
nE

i=1
di = 2m..

Proof Note that G. is a simple graph. Consequently, each vertex v ∈ V . can be
adjacent to at most n − 1. other vertices, which substantiates conclusion (1). The
proof for conclusion (2) follows from the pigeonhole principle. As for conclusion
(3), since each edge contributes two to the total sum of the degrees of all vertices,
this conclusion is also valid. UU

2.1.3 Graph Operations

Graphs, much like numbers, vectors, and matrices, can be subjected to a range of
operations that fulfill distinct functions. As the field of graph theory progresses, the
development of additional operations is anticipated. This section aims to introduce
some of the fundamental operations that are essential to graph analysis.

2.1.3.1 Subgraphs and Unary Graph Operations

For two graphs G and H , if V (H) ⊆ V (G). and E(H) ⊆ E(G)., then H is called
a subgraph of G; if, in addition, V (H) /= V (G). or E(H) /= E(G)., then H is
called a proper subgraph of G. Among the various types of subgraphs, two special
and important categories are spanning subgraphs and induced subgraphs, which are
defined as follows:

Let H . be a subgraph of G.. If V (H) = V (G)., then H . is referred to as a
spanning subgraph of G.. Let V ' ⊆ V (G). with V ' /= ∅.. The subgraph induced
by V '

., often called a vertex-induced subgraph, denoted as G[V ']., consists of
the vertex set V '

. and the edge set {uv | u, v ∈ V ' and uv ∈ E(G)}.. Similarly,
we can define an edge-induced subgraph. Let E' ⊆ E(G). represent a non-empty
subset of the edges of a graph G.. The subgraph induced by E'

., or simply an
edge-induced subgraph, denoted as G[E']., is formed with the vertex set {v |
v is an endpoint of an edge in E'}. and the edge set E'

..
Next, we introduce two basic operations associated with a graph: the operations

of vertex deletion and edge deletion.

2.1 Graph Theory Basics 17

Vertex Deletion Let G = (V ,E). be a graph, and let V ' ⊆ V . be a subset of its
vertices. Deleting V '

. from G. involves removing the vertices in V '
. along with all

edges that are incident to these vertices. The resulting graph is denoted as G − V '
.

and is called the vertex-deleted subgraph of G.. In fact, G − V '
. is the subgraph

induced by the remaining vertices V − V '
.; thus, we have G − V ' = G[V − V ']..

When V '
. consists of a single vertex, say {v}., we simply denote G − {v}. by G − v ..

Edge Deletion Let E' ⊆ E . be a subset of edges from a graph G = (V ,E)..
Deleting E'

. from G. entails removing all edges included in E'
., resulting in a

subgraph known as the edge-deleted subgraph of G., denoted by G − E'
.. When

E'
. consists of a single edge, denoted as e., we simply denote G − {e}. by G − e..

The operations of vertex deletion and edge deletion are categorized as unary
graph operations within the field of graph theory, as they pertain to actions taken
on a single graph. Figure 2.8 provides an illustration of the concepts of spanning
and induced subgraphs, as well as these two types of unary operations.

Based on the concept of subgraphs, we present the definitions of connected
graphs and trees. Let G = (V ,E). be a graph. If, for every pair of vertices u, v ∈ V .,
there exists a path that connects u. to v . within G., then G. is defined as a connected
graph. Consider a subgraph H . of G.. If H . is connected and is not a proper subgraph
of any connected subgraph of G., then H . is termed a connected component of G..
Furthermore, if G. does not contain any subgraphs that form a cycle, it is classified
as acyclic. An acyclic graph is also called a forest, while a connected acyclic graph
is known as a tree.

g

d

1

2

3 45

6
7

a

b

c
ef h
i

j

k

g

d

1

2

3 45

6
7

a

b

c
ef h
i

j

k

g

d

1

2

3 45

6
7

a

b

c
ef

l

h
i

j

k

g

d

1

2

3 45

6
7

a

b

c
ef

l

h
i

j

k

g
1

26
7

a

b

l

h
i

j

k

g
1

26
7

a

b

l

h
i

j

k

(a) (b) (c)

g

d

1

2

35

6

a

bef

l

h

g

d

1

2

35

6

a

bef

l

h

(d) (e) (f)

g
1

2

3 4

6
7

e

f h
i k

a

5

g
1

2

3 4

6
7

e

f h
i k

a

5
d

2

3 45

6
7

b

c
ef h
i k

d

2

3 45

6
7

b

c
ef h
i k

Fig. 2.8 Examples of various subgraphs: (a) A graph G; (b) a spanning graph of G; (c) G−{4, 5}.;
(d) G[{1, 2, 3, 5, 6}].; (e) G − {b, c, d, j, l}.; (f) G[{b, c, d, e, f, h, i, k}].

18 2 Graphs and Computational Complexity

2.1.3.2 Binary Graph Operations

This section presents an overview of the five primary operations utilized between
two graphs, referred to as binary graph operations. These operations include
union, intersection, difference, symmetric difference, and join. For the purposes of
this discussion, we denote the two graphs as G1 = (V1, E1). and G2 = (V2, E2)..

Union The union of two graphs G1 . and G2 ., denoted as G1 ∪ G2 ., is defined as a
graph consisting of the vertex set V1 ∪ V2 . and the edge set E1 ∪ E2 .. When G1 . and
G2 . have no edges in common, the union G1 ∪ G2 . is termed the direct sum of G1 .

and G2 .. Thus, when the book refers to the direct sum operation, it clarifies that the
graphs involved do not share any edges.

Intersection The intersection of two graphs G1 . and G2 ., denoted as G1 ∩ G2 ., is
defined as a graph consisting of the vertex set V1 ∩ V2 . and the edge set E1 ∩ E2 ..

Difference The difference between the graphs G1 . and G2 ., represented as G1−G2 .,
defines the subgraph of G1 . obtained by removing the edges present in G2 . from G1 ..
Specifically, this can be expressed as G1 − G2 = G1 − (E1 ∩ E2)..

Symmetric Difference The symmetric difference of two graphs G1 . and G2 .,
denoted as G1
textcircled+G2 ., is the difference between G1 ∪ G2 . and G1 ∩ G2 ., i.e., G1
textcircled+G2 = (G1 ∪ G2) − (G1 ∩ G2) = (G1 − G2) ∪ (G2 − G1)..

Figure 2.9 illustrates the definitions of the operations described above.

Join The join of two vertex-disjoint graphs G. and H ., denoted as G + H ., is the
graph with the vertex set V1∪V2 .and the edge set E1∪E2∪{uv | u ∈ V1 and v ∈ V2}..

Fig. 2.9 Illustrations for the operations of union, intersection, difference, symmetric difference,
and join. (a) a graph G1 .; (b) a graph G2 .; (c) G1 ∪ G2 .; (d) G1 ∩ G2 .; (e) G1 − G2 .; (f) G1 +oG2 .

2.1 Graph Theory Basics 19

Fig. 2.10 Illustrations for the
operation of join: (a) P4 .; (b)
C3 .; (c) P4 + C3 .

(a) (b) (c)

Fig. 2.11 Illustration for the
complement operation: (a) A
graph G; (b) G.

In this definition, the edges uv . connect every vertex in G. to every vertex in H ..
Figure 2.10 illustrates this idea by showing the join of the 3-length path P4 . and the
3-cycle C3 ..

2.1.3.3 Other Unary Graph Operations

In addition to the vertex and edge deletion operations, many other unary graph
operations exist. This section introduces two additional operations commonly
applied to a single graph: the complement operation and the contraction operation.

Complement Let G = (V ,E). be a simple graph. The complement of G., denoted
as G., is defined as the graph that has the vertex set V . and the edge set {uv | u, v ∈
V and uv /∈ E}.. Figure 2.11 illustrates a graph and its complement. It can be readily
demonstrated that a simple graph G. of order n. and its complement G. together form
a complete graph of order n.. As a result, we obtain the following relationship:

. |E(G)| + |E(G)| = n(n − 1)

2
.

Remark 2.5 A graph is complete if and only if its complement is a null graph.

The relationship between a graph and its complement has significant network
and system analysis implications. Typically, as a network’s structure’s complexity
grows, its complement structure becomes simpler. By investigating the complement
network, we can uncover valuable insights into the characteristics of the original
network.

20 2 Graphs and Computational Complexity

Fig. 2.12 Illustration for the contraction operation: (a) A graph G; (b) G ◦ {2, 5, 7, 8}.; (c) G ◦ 78.;
(d) G ◦ {3, 8}.

Contractions Given a simple graph G = (V ,E). and a subset of its vertices V ' ⊆
V .. The process of contracting V '

. involves first removing all edges that connect
both endpoints in V '

., and then replacing V '
. with a single new vertex that is incident

with all edges that were originally incident with any vertex in V '
.. This operation

is referred to as the vertex-contracted operation concerning V '
., and the resulting

graph is known as the contraction graph of G. with respect to V '
., denoted as G ◦

V '
.. Furthermore, when V ' = {u, v}. and uv ∈ E ., the contraction graph G ◦ V '

.

specifically represents the graph obtained by contracting the edge uv . in G., denoted
as G ◦ uv .. This procedure is also referred to as the edge-contracted operation.
Fig. 2.12 depicts a graph along with the contraction graphs with respect to the vertex
subset {2, 5, 7, 8}., the edge 78., and the vertex subset {3, 8}..

2.1.4 Graph Isomorphism

A graph is defined as a structure that illustrates the adjacency between pairs of
vertices within a vertex set. The arrangement of the vertices in the graph is irrelevant,
and the edges connecting two vertices are not influenced by factors such as length,
curvature, or shape. Consequently, some graphs that may initially appear distinct
can actually be identical. This relationship between seemingly different graphs is
referred to as isomorphism, which is defined as follows:

Let G1 = (V1, E1). and G2 = (V2, E2). represent two simple graphs. The graphs
G1 . and G2 . are considered isomorphic, denoted as G1 ∼= G2 ., if there exists a
bijection σ . that maps V1 . to V2 . such that for any u, v ∈ V1 ., u. and v . are adjacent
in G1 . if and only if σ(u). and σ(v). are adjacent in G2 .. This bijection σ . is referred
to as an isomorphic mapping between G1 . and G2 .. The graphs G. and G'

. depicted
in Fig. 2.13 are isomorphic to one another, with the isomorphic mapping σ . defined
as follows: σ(vi) = i . for i = 1, 2, 3, 4, 5, 6., where V (G) = {v1, v2, v3, v4, v5, v6}.
and V (G') = {1, 2, 3, 4, 5, 6}..

2.1 Graph Theory Basics 21

Fig. 2.13 Two classic
isomorphic graphs

Fig. 2.14 Three
non-isomorphic (4,3)-graphs

2.1.4.1 Isomorphism Testing Algorithms

The task of determining whether two graphs are isomorphic is referred to as the
graph isomorphism testing problem. The classification of this problem as a P
problem or an NP-complete problem remains an open question. Below, several
intuitive methods for addressing the graph isomorphism problem will be discussed.

Theorem 2.2 (Order and Size-Based Method) If two graphs are isomorphic, they
have the same order and size; however, the reverse is not necessarily true. UU

This method (Theorem 2.2) only allows for the determination of non-
isomorphism between two graphs under specific conditions: if the number of
vertices in the two graphs is not equal, they must be non-isomorphic. Similarly, if
the number of vertices is the same but the number of edges differs, the graphs are
also non-isomorphic. However, this approach is somewhat simplistic, as numerous
graphs can share the same number of vertices and edges while still being non-
isomorphic. For example, there are three non-isomorphic (4,3)-graphs, as depicted
in Fig. 2.14. Next, we present the method of comparing degree sequences.

Theorem 2.3 (Degree Sequence-Based Method) Isomorphic graphs have identi-
cal degree sequences; however, the reverse is not necessarily true. UU

This method (Theorem 2.3) can assess whether two graphs are non-isomorphic
by examining their degree sequences. If the degree sequences differ, the graphs are
confirmed to be non-isomorphic. However, this approach has limitations, as several
non-isomorphic graphs can possess the same degree sequence. For instance, there
are two graphs with six vertices that share the degree sequence (2, 2, 2, 2, 2, 2). One
graph is the 6-cycle C6 ., while the other consists of two disjoint triangles.

Theorem 2.4 (Complement Graph-Based Method) Two graphs are isomorphic
if and only if their complements are isomorphic. UU

Generally, determining whether two graphs are isomorphic is typically a chal-
lenging problem, and various algorithms have been created to tackle it. Currently,
the most effective algorithm for graph isomorphism is the quasi-polynomial time

22 2 Graphs and Computational Complexity

algorithm introduced by Babai [5] in 2016. For a more in-depth exploration of graph
isomorphism algorithms, please consult the review referenced in [6].

2.1.4.2 Applications of Graph Isomorphism

The graph isomorphism problem is highly relevant in several practical applications.
Assessing whether two systems are isomorphic is crucial for effective system
modeling in system engineering. Moreover, it is important to eliminate numer-
ous isomorphic graphs when generating graphs using computer algorithms. For
instance, isomorphic algorithms have been used to identify subgraphs in the study
of Ramsey number theory [7, 8].

2.1.5 Matrices of Graphs

An invariant of a graph is a numerical value or vector that remains unchanged for
any isomorphic graph. For instance, the number of vertices in a graph is an invariant.
Likewise, the number of edges is also an invariant. Additionally, the chromatic
number and the independence number are also invariants of a graph. The degree
sequence is a vector-type invariant. In general, it is difficult for graph invariants to
accurately characterize a graph’s structure and features.

The matrices associated with graphs play a crucial role in accurately representing
their structure and characteristics, forming the foundation for computer-based
information processing of graphs. This section offers an overview of two primary
matrices in graph theory, incidence and adjacency matrices, and another significant
matrix in algebraic graph theory—the Laplacian matrix.

Let G = (V ,E). be an (n,m).-graph, where V = {v1, v2, . . . , vn}. and E =
{e1, e2, . . . , em}.. The incidence matrix of G., denoted as M(G) = (mij)n×m ., is an
n × m. matrix. Each entry mij . (with i = 1, 2, . . . , n. and j = 1, 2, . . . , m.) indicates
the number of times vertex vi . is incident to edge ej ., taking on values of 0, 1, or 2.
Figure 2.15 visually represents a graph and its corresponding incidence matrix.

M G()

2 1 0 0 1 0 0 0 0

0 1 1 0 0 1 1 0 0

0 0 0 1 1 1 1 0 0

0 0 1 1 0 0 0 1 1

0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 1 0

1e
1e

2e

2e
3e

3e

4e

4e 9e

8e
5e

7e

3v 4v
5v

6v
1v

2v

3v

4v
5v

6v

2v

1v

G:
6e

5e 6e 7e 8e 9e

Fig. 2.15 A graph G and its incidence matrix M(G).

2.1 Graph Theory Basics 23

The incidence matrix is a matrix that represents the structure of a graph by
depicting the relationships between its vertices and edges. When a graph has a
significant number of edges, the storage space required for computations using
the incidence matrix can be quite substantial. As a result, the adjacency matrix is
often used as an effective alternative. The adjacency matrix illustrates the adjacency
relationships among the graph’s vertices.

Let G = (V ,E). be an n-order graph, where V = {v1, v2, . . . , vn}.. The
adjacency matrix of G, denoted by A(G) = (aij)n×n ., is an n × n. matrix. Each
entry aij . (with i, j = 1, 2, . . . , n.) indicates the number of edges connecting vi . and
vj .. For example, the adjacency matrix corresponding to the graph shown in Fig. 2.15
is as follows:

. A(G) =

v1 v2 v3 v4 v5 v6

v1

v2

v3

v4

v5

v6

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1 1 0 0 0
1 0 2 1 0 0
1 2 0 1 0 0
0 1 1 1 0 1
0 0 0 1 0 0
0 0 0 1 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

The adjacency matrix A(G). of a graph G has the following properties:

(1) The matrix A(G). is symmetric, and the diagonal elements of A(G). are zero if
and only if the graph G. is acyclic.

(2) The matrix A(G). is a symmetric 0-1 matrix with diagonal elements equal to
zero if and only if the graph G. is a simple graph.

Remark 2.6 Simple graphs have a one-to-one correspondence with 0-1 symmetric
matrices in which all diagonal elements are equal to 0. This relationship arises
because, for any 0-1 symmetric matrix A. with zero diagonal elements, one can
uniquely construct a simple graph G. such that A(G) = A.. Conversely, the
conclusion is supported by the property (2) of the adjacency matrix.

Remark 2.6 illustrates the applicability of matrices in the analysis of graph
properties. Below, two fundamental theorems (Theorems 2.5 and 2.6) are presented,
and their respective proofs can be found in reference [3].

Theorem 2.5 Let G be a simple graph with order p and A(G) = (aij)p×p . is the
adjacency matrix of G. Then,

(1) In (A(G))l ., the l.-th power of the adjacency matrix A(G)., the entry a
(l)
ij .

corresponding to the i-th row and j -th column indicates the number of walks2

of length l. from vertex vi . to vertex vj . in the graph G, where i, j ∈ {1, 2, . . . , p}..

2 A walk refers to a sequence of vertex-edge interactions: v0e1v1e2 . . . ekvk ., where k is called the
length of the walk, and ei = vi−1vi ., i = 1, 2, . . . , k ..

24 2 Graphs and Computational Complexity

(2) For i ∈ {1, 2, . . . , p}., we have a
(2)
ii =

pE

j=1
aij aji = d(vi)..

(3) For i ∈ {1, 2, . . . , p}., the entry a
(3)
ii . corresponds to twice the number of

triangles in G that include vertex vi .. UU
The following theorem characterizes the relationship between the adjacency

matrix and the incidence matrix in regular graphs.

Theorem 2.6 Let M(G). and A(G). be the incidence matrix and adjacency matrix
of a k-regular graph G of order n, respectively. Then,

. M(G)MT (G) = A(G) + kIn,

where MT (G). is the transpose of M(G). and In . is a n-order identity matrix. UU
Let G = (V ,E). be a graph of order n., where V = {v1, v2, . . . , vn}.. The n × n.

matrix L(G) = D(G) − A(G). is referred to as the Laplacian matrix of G.. In this
context, A(G). denotes the adjacency matrix of the graph, while D(G). is defined as
follows:

. D(G) =

⎡

⎢
⎢
⎢
⎣

d1 0 · · · 0
0 d2 · · · 0
...

...
. . .

...

0 0 · · · dn

⎤

⎥
⎥
⎥
⎦

In this matrix, the diagonal elements di . (for i = 1, 2, . . . , n.) represent the degree of
the vertex vi . in the graph, while all off-diagonal elements are zeros.

For a graph G = (V ,E)., the Laplacian matrix L(G). possesses the following
properties:

(1) L(G). is a symmetric and semi-positive definite matrix.
(2) The rank of L(G). is n − k ., where k . represents the number of connected

components in the graph G..
(3) For any vector X = (x1, x2, . . . , xn)

T
., the following holds:

. XT L(G)X =
7

vivj ∈E

(xi − xj)
2.

(4) The sum of each row and each column in L(G). is zero.
(5) The algebraic cofactors corresponding to any element in L(G). are identical.

2.1 Graph Theory Basics 25

2.1.6 Graph Coloring

Graph coloring is a significant field within graph theory that has a variety of
applications, such as task scheduling, process optimization, protein structure pre-
diction, and code-breaking. One of the main goals of this book is to develop a DNA
computing approach to address the graph coloring problem, along with a specialized
DNA computer model. This section presents a comprehensive introduction to the
graph coloring problem.

2.1.6.1 Definition and Classification

A k-vertex-coloring of a graph G = (V ,E)., commonly referred to as k-coloring,
is a mapping f from the vertex set V to the color set C(k) = {1, 2, . . . , k}. such
that for any edge xy ∈ E ., the colors assigned to the vertices at either endpoint of
the edge must differ, meaning f (x) /= f (y).. A graph G is called k-colorable if G
admits a k-vertex-coloring. The chromatic number of a graph G, denoted as χ(G).,
represents the smallest positive integer k for which G is k-colorable. If χ(G) = k .,
then G is called a k-chromatic graph.

Each k .-coloring f . of a graph G = (V ,E). uniquely corresponds to a k .-
color class partition (V1, V2, . . . , Vk). that satisfies the following conditions: V =
V1 ∪ V2 ∪ . . . ∪ Vk . and Vi /= ∅. for each i ., where i = 1, 2, . . . , k .. In this context,
Vi . represents the subset of vertices assigned color i ., known as a color class. If the
colors of the vertices in Vi . and Vj . are swapped while the colors of all other vertices
remain unchanged, the resulting coloring is deemed equivalent to the original.
As a result, each equivalence class of a k .-coloring contains k!. distinct colorings.
The collection of all k .-colorings, obtained by selecting one k .-coloring from each
equivalence class, is denoted as C0

k (G).. Let f ∈ C0
k (G).. We denote the subgraph

induced by the vertices colored with colors i . or j . under f . as G
f
ij .. This is referred

to as a bicolor-induced subgraph, where i, j ∈ C(k). and i /= j .. When the context
permits, we may simply represent G

f
ij . as Gij .. The connected components within

Gij . are referred to as ij .-components or bicolor-components.
If C0

k (G). contains only one k-coloring, then G is called a uniquely k-colorable
graph. The graph shown in Fig. 2.16 is an example of uniquely 3-colorable graphs.

A k-edge-coloring of a graph G = (V ,E)., commonly referred to as edge
coloring, involves assigning colors from the color set C(k) = {1, 2, . . . , k}. to the

Fig. 2.16 A uniquely
3-colorable graph of order six

2233

322

1

1

26 2 Graphs and Computational Complexity

edges in E such that any two adjacent edges e and e'
. receive different colors, i.e.,

f (e) /= f (e').. If a graph G has a k-edge-coloring, it is termed k-edge-colorable.
The edge chromatic number of the graph G, denoted as χ '(G)., represents the
smallest positive integer k for which G is k-edge-colorable. When χ '(G) = k ., the
graph G is called a k-edge-chromatic graph.

In a manner analogous to vertex-coloring, each k-edge-coloring of the graph G
corresponds to a partition {E1, E2, . . . , Ek}. of its edge set E. Each Ei . (for i =
1, 2, . . . , k .) is referred to as an edge-color class, representing the collection of all
edges assigned the color i. In other words,

. E(G) =
kl l

i=1

Ei, Ei /= ∅, Ei ∩ Ej = ∅, i /= j, i, j = 1, 2, . . . , k,

A k .-total-coloring of a graph G = (V ,E)., commonly referred to as total
coloring, is a mapping from the set V ∪ E . to the color set C(k) = {1, 2, . . . , k}.
such that any pair of incident or adjacent elements x . and y . within V ∪ E . receive
distinct colors, i.e., f (x) /= f (y).. When a k .-total-coloring exists for G., the graph
G is called a k .-total-colorable graph. The total chromatic number of graph G.,
denoted as χT (G)., indicates the smallest positive integer k . that allows G. to be k .-
total-colorable.

2.1.6.2 Chromatic Number of a Graph

In the previous section, we examined various types of graph colorings along
with their associated chromatic numbers. A pertinent question arises: how can we
ascertain the chromatic number of a graph? Furthermore, is there a connection
between the chromatic number and other graph invariants?

Theorem 2.7 ([9]) The chromatic number of any graph G. satisfies the inequality
χ(G) ≤ Δ(G)+1., where Δ(G). represents the maximum degree of the graph G.. UU

Theorem 2.7 establishes an upper bound for the chromatic number of a graph. In
addition, for a graph G. that is either a complete graph or a cycle of odd length, it is
true that χ(G) = Δ(G) + 1.. For graphs of different types, this conclusion can be
further enhanced.

Theorem 2.8 (Brooks’ Theorem [9]) If the graph G is neither an odd cycle nor a
complete graph, then χ(G) ≤ Δ(G).. UU

Note that a k .-vertex-coloring of a graph G = (V ,E). (E /= ∅.) corresponds to a
partition of the vertex set V . into k . color classes. Therefore, when k = 2., the vertex
set V . of the nonempty graph G can be divided into two independent sets, V1 . and V2 ..
This implies that any edge in E connecting a vertex in V1 . must connect to a vertex
in V2 . and vice versa. Such a graph G. is known as a bipartite graph.

2.1 Graph Theory Basics 27

Theorem 2.9 The chromatic number of a graph G. is equal to two if and only if G.

is a nonempty bipartite graph. UU
Theorem 2.10 (Vizing’s Theorem [10, 11]) For any simple graph G, it holds that
Δ(G) ≤ χ '(G) ≤ Δ(G) + 1.. UU

Vizing’s theorem provides a notable conclusion, as there exist graphs for which
χ '(G) = Δ(G)., as well as graphs for which χ '(G) = Δ(G) + 1.. Despite this, the
question of what type of graph G meets the condition χ '(G) = Δ(G). remains an
open problem.

With regard to the total chromatic number, Behzad [12] and Vizing [13]
independently introduced the renowned Total Coloring Conjecture, which has yet
to be resolved to this day.

Conjecture 2.1 (Total Coloring Conjecture [12, 13]) For any simple graph G., the
following inequality holds: Δ(G) ≤ χT (G) ≤ Δ(G) + 1..

2.1.6.3 Vertex Coloring Algorithms

Vertex-coloring algorithms are employed to determine the chromatic number of
a graph or to create a k-coloring for a k-chromatic graph. Both of these tasks
are classified as NP-complete problems. This section highlights a selection of
established algorithms for vertex coloring.

(1) Vertex Contraction and Edge Addition Method [14]
Let G = (V ,E). be a graph, and let u, v ∈ V . such that uv /∈ E .. We denote the graph
formed by adding the edge uv . to G. as G + uv .. Furthermore, G ◦ {u, v}. represents
the graph obtained by contracting the vertex subset {u, v}. in G..

Theorem 2.11 Let u, v . be two nonadjacent vertices of a graph G. Then χ(G) =
min{χ(G + uv), χ(G ◦ {u, v})}.. UU

According to Theorem 2.11, the vertex contraction and edge addition method
serves as an algorithm for vertex coloring.

Consider a graph G = (V ,E). with two nonadjacent vertices, u. and v .. The
operation of contracting the pair {u, v} in G. is termed vertex contraction,
while adding an edge between u. and v . is termed edge addition. By repeatedly
applying vertex contraction and edge addition, the graph can be transformed into
some complete graphs. The chromatic number of the graph G. corresponds to
the chromatic number of the smallest complete graph. Figure 2.17 illustrates this
process for calculating the chromatic number of the 5-cycle C5 ..

(2) Independent Set Method [15]
Let S . be an independent set of a graph G = (V ,E).. If each vertex in V − S . is
adjacent to at least one vertex in S ., then S . is referred to as a maximal independent
set of G.. In addition, if S . is an independent set of G. and no other independent set
S'

. exists such that |S'| > |S|., then S . is known as the maximum independent set

28 2 Graphs and Computational Complexity

Fig. 2.17 An illustration for
determining the chromatic
number of the 5-cycle C5 . by
vertex contraction and edge
addition method

of G.. A cover of the graph G. is defined as a subset K ⊆ V . such that every edge in
G. has at least one endpoint in K .. A minimal cover of G. is a vertex subset K . that
satisfies the condition: for each vertex v . in V ., either v ∈ K . or N(v) ⊆ K ., where G
contains no isolated vertex.

Since the vertices in an independent set can all be assigned the same color, the
vertex set of a graph can be partitioned into subsets, with each subset forming
an independent set. This partitioning is known as an independent partition, and
the total number of independent sets created is called the independent partition
number. Thus, the minimum independent partition number of the graph’s vertex set
corresponds to the graph’s chromatic number. Consequently, the chromatic number
can be determined by examining all possible independent partitions. Furthermore,
since each independent set is a subset of some maximal independent set, the
following recursive formula holds:

. χ(G) = 1 + min{χ(G − I) | I is a maximal independent set of G}.

Consequently, to determine the chromatic number of a graph, we can recursively
enumerate all maximal independent sets. Importantly, the complement of each
maximal independent set corresponds to a minimal cover. We can identify maximal
independent sets by determining minimal covers.

Let v .be a vertex of a graph G.. In the process of finding a minimal cover, there are
two choices: you can either select vertex v . or choose all the vertices in N(v).. This
process can be translated into an algebraic expression. In this notation, “selecting
vertex v .” is denoted simply as v .. The symbol “+” indicates “or,” while “ ×.”
signifies “and.” For convenience, we will use uv . to represent u× v .. Considering the
graph shown in Fig. 2.18, we apply this method to calculate its chromatic number.

2.1 Graph Theory Basics 29

Fig. 2.18 A graph with order
seven

a

b c d

e g

f

According to the established conventions, the corresponding algebraic expression
for the minimal cover of this graph is:

. (a + bd)(b + aceg)(c + bdef)(d + aceg)(e + bcdf)(f + ceg)(g + bdf)

= aceg + bcdeg + bdef + bcdf.

It is crucial to recognize that, since we are focused solely on the minimal
cover, the outcome of the previously mentioned formula has eliminated
non-minimal terms, i.e., those that are proper subsets of other terms. For
instance, the set {a, c, e, g}. is a proper subset of {a, b, c, d, e, f, g}., which is
why the term abcdefg has been excluded. Consequently, we can infer that
{a, c, e, g}, {b, c, d, e, g}, {b, d, e, f }., and {b, c, d, f }. represent all the minimal
covers of Fig. 2.18, while their complements, {b, d, f }, {a, f }, {a, c, g}., and
{a, e, g}., correspond to all the maximal independent sets. We remove these
four maximal independent sets from the graph by applying the previously stated
chromatic number recursion formula. We will continue identifying and eliminating
maximal independent sets from the current graph until all vertices have been
removed. Through this method, we determine that the chromatic number of
the graph is 3, and the corresponding 3-coloring can be expressed as follows:
{b, d, f }, {a, e, g}, {c}..
(3) Powell Method [16]
The specific steps of the Powell method for graph coloring are outlined below:

Step 1. Arrange the vertices of the graph in descending order based on their
degree. (For vertices that have the same degree, the order can be determined
arbitrarily.)
Step 2. Begin by coloring the first vertex with the initial color (let’s designate it
as Color 1). Then, proceed to color the first uncolored vertex that is not adjacent
to any of the previously colored vertices with Color 1. Continue this process until
no more vertices meet these criteria.
Step 3. Repeat Step 2 for the remaining uncolored vertices, applying the second
color (designated as Color 2), then the third color (Color 3), and so on, until all
vertices have been colored.

Using Fig. 2.18 as an illustration, we begin by arranging the vertices in descend-
ing order based on their degree: c, e, b, d, f, g, a .. We start by assigning Color 1

30 2 Graphs and Computational Complexity

to vertex c. Next, we color vertices g and a, which are not adjacent to c, with the
same color, Color 1. Following this, we color vertex e with Color 2. We examine
its adjacent vertices: b, d,. and f . Since g and a have already been assigned Color
1, only vertex e requires Color 2. We then move on to vertex b and color it with
Color 3. Upon checking its adjacent vertices, we find that both vertex d and vertex
f should also be assigned Color 3. At this stage, all vertices have been colored, and
the chromatic number of the graph is three.

In addition to the above methods, there are also many other well-established
algorithms for vertex coloring in graphs, including sequential coloring, the enhanced
SEQ algorithm, and the DSATUR algorithm, among others. For those interested in
exploring vertex coloring algorithms based on bionic and biological computing, we
recommend consulting references [17, 18].

2.1.6.4 Application of Graph Coloring

The graph coloring problem is not only of considerable theoretical interest but
also has numerous practical applications. This section highlights a few of these
applications.

(1) Traffic Signal Light Problem
At intersections, traffic signal lights are essential for managing vehicle flow. When
cars from two different lanes attempt to enter the intersection at the same time,
the potential for collisions arises; therefore, vehicles from these lanes cannot safely
proceed simultaneously. It is crucial to determine the minimum number of signal
phases required for the traffic light to ensure safety.

This problem can be addressed through vertex coloring of a graph. We begin by
constructing a graph in which the vertex set represents all lanes at the intersection
and two vertices are considered adjacent if the vehicles in the corresponding
lanes cannot enter the intersection concurrently. Thus, the task of determining the
minimum number of signal phases required is equivalent to finding the number of
colors necessary for the graph.

(2) Storage Problem
A chemical product company is faced with the challenge of storing various chemical
products, some of which cannot come into contact with one another due to
safety risks or potential deterioration. As a result, the company must organize its
warehouse in such a way that incompatible products are stored in separate areas.
The key question is: what is the minimum number of sub-warehouses needed to
achieve this?

This scenario can be reinterpreted as a vertex coloring problem. We can construct
a graph where the vertices represent all types of chemical products to be stored. Two
vertices are adjacent if the corresponding products cannot touch each other. Thus,
the minimum number of sub-warehouses required corresponds to the chromatic
number of the graph.

2.2 Turing Machine 31

(3) Class Scheduling Problem
When scheduling classes for a group of students in a school, the initial step is to
clarify the class hours for each teacher assigned to each class. The objective is to
develop a timetable that minimizes the total number of class hours needed. This
class scheduling problem can be formulated as a graph edge coloring problem. We
construct a bipartite graph G. with a vertex set V = {t1, t2, . . . , tm, c1, c2, . . . , cn}.,
where the set of teachers is {t1, t2, . . . , tm}. and the set of classes is {c1, c2, . . . , cn}..
If teacher ti . is responsible for teaching pij . lessons for class cj ., then there are pij .

edges linking the vertices ti . and cj .. Therefore, finding a solution that minimizes the
number of class hours is equivalent to determining the edge chromatic number of
the graph.

In practical applications, the class scheduling problem is often complicated by
various constraints, such as a limited number of available classrooms. For further
exploration of related research on this topic, please refer to references [19, 20].

2.2 Turing Machine

The Turing machine is a mathematical model of an electronic computer. It is
the “soul” of an electronic computer. The Turing machine has made an indelible
contribution to the development of human social civilization. Since the NP-complete
problem is defined under the Turing machine, in order to conduct in-depth research
on the NP-complete problem, this section first introduces the origin, definition, basic
theory of the Turing machine, and the complexity of solving problems under the
Turing machine.

2.2.1 The Founder of the Turing Machine: Turing

The person who proposed the Turing machine is Alan Turing; this section will first
provide a brief introduction to this great genius scientist. Turing was born in London,
England, in 1912, began majoring in mathematics at the University of Cambridge in
1931, and graduated with a bachelor’s degree in 1934 with excellent grades. In 1935,
he continued to pursue a master’s degree at the University of Cambridge and, during
this period, proposed the concept of the Turing machine. In 1936, Turing went to
Princeton University in the United States for further study under the guidance of
Alonzo Church and obtained a doctorate in mathematics in 1938. During Turing’s
doctoral studies, John von Neumann was already a professor of quantum mechanics
at Princeton University. He was very interested in the Turing machine proposed
by Turing and invited him to be his assistant, but Turing politely declined and
returned to work in the UK after graduation. Based on the Turing machine and
basic electronic components, von Neumann established the architecture of today’s
electronic computers. Turing’s impact on the development of theoretical computer

32 2 Graphs and Computational Complexity

science is enormous, and he is considered the father of theoretical computer science.
Hence, the highest award in the field of computer science is named the Turing
Award. The Turing machine was invented by Turing, and the origin of the Turing
machine is introduced below.

In his 1936 paper “On Computable Numbers, with an Application to the
Entscheidungsproblem” [21], Turing proposed a concept of computability similar
to that of Alonzo Church and proved that Hilbert’s Entscheidungsproblem is
unsolvable. In the process of proving, Turing defined several types of computing
machines, one of which is the predecessor of the Turing machine. This paper is
considered one of the most influential mathematical papers in history.

In fact, the study of “computability” can be traced back to 1904, when David
Hilbert proposed studying mathematical proofs themselves as mathematical objects.
In 1922, he proposed his proof theory research plan at a conference in Ham-
burg, Germany, known as the Hilbert Program. According to this plan, specific
mathematical theories and the logic used are axiomatized at the same time to
form a formal system. The Hilbert Program presented an exciting endeavor, with
the goal of “once and for all eliminating any doubts about the reliability of the
mathematical foundation”. In addition to Hilbert, this endeavor attracted a group
of young mathematicians, such as Wilhelm Ackermann and John von Neumann. In
1931, Kurt Gödel proved that any formal system that includes first-order predicate
logic and elementary number theory is incomplete, thereby negating the Hilbert
Program. From the spring of 1935 to the spring of 1936, Turing and Alonzo
Church began to study the decidability of problems from Gödel’s incompleteness
theorem. On May 28, 1936, Turing published “On Computable Numbers, with an
Application to the Entscheidungsproblem” in two parts in the Journal of the London
Mathematical Society, in which he restated Gödel’s achievements in 1931 and
proposed the concepts of deterministic Turing machines, non-deterministic Turing
machines, and universal Turing machines. The Turing machine later became the
foundation of computability theory and computational complexity theory.

In 1938, in his doctoral thesis “Systems of Logic Based on Ordinals” [22], Turing
introduced the concepts of ordinal logic and relative computation, expanding the
research field of mathematical logic. In addition to pure mathematical work, Turing
also studied cryptography and built an electromechanical binary multiplier. During
World War II, Turing worked at the Government Code and Cypher School at Bletch-
ley Park, the UK’s code-breaking center, which produced extremely important
intelligence. Turing designed technology to accelerate the decryption of German
codes, built an electromechanical device that could decrypt messages encrypted by
the Enigma machine, and played a key role in decrypting intercepted information,
enabling the Allies to defeat the Axis in several key battles, including the Battle of
the Atlantic. After the war, Turing worked at the National Physical Laboratory in the
UK, where he designed the Automatic Computing Engine, one of the earliest stored-
program computers. In 1948, Turing joined Max Newman’s computer laboratory at
the University of Manchester, helped develop the Manchester computer, and became
interested in mathematical biology. Subsequently, Turing’s research involved bio-
logical computation and pattern formation, which had a significant impact on early

2.2 Turing Machine 33

Fig. 2.19 Structure of the turing machine

machine learning and computational biology. In addition, Turing wrote a paper on
the chemical basis of morphogenesis and predicted oscillating chemical reactions.
The Turing test he proposed is still considered the standard for judging machine
intelligence.

The following introduces various types of Turing machines, including determin-
istic and non-deterministic Turing machines and their variants, and it can be seen
that they are theoretically equivalent, that is, they have Turing equivalence.

2.2.2 Turing Machine

So far, electronic computers cannot effectively solve NP-complete problems, the
reason is: the computational model of electronic computers is Turing Machine,
denoted as M. The Turing machine is an abstract machine, consisting of an infinitely
long data tape, a read-write head, and a controller, as shown in Fig. 2.19. The
data tape can be infinitely extended in both directions and is divided into small
squares, each square storing a symbol from a finite alphabet (including blank symbol
 .); The controller controls the read-write head to “move” according to the set state
transition function (program), the read-write head is always in a current state.
“Move” is also known as Turing operation, which includes the following four
actions:

(1) Read the symbol in the square pointed to by the read-write head;
(2) Erase the symbol in the square pointed to by the read-write head and write a

new symbol, but the new symbol can be the same as the erased symbol;
(3) The read-write head moves one square to the left or right, or does not move;
(4) Change the state of the controller, but the new state can be the same as the state

before the move.

Actions (2)–(4) are based on action (1), the current state of the read-write head,
and the transition function δ .. If δ . is single-valued, then M is deterministic; if δ . is
multi-valued, then M is non-deterministic. This article only considers deterministic
Turing machines. Specifically, a Turing machine can be represented as the following
five-tuple

• (Q,Σ, Γ, , δ). is a finite state set, including the initial state q0 . and the
acceptance state set H ;

34 2 Graphs and Computational Complexity

• Σ . is the alphabet, each Turing machine M. has a specified input alphabet Σ .,
• Γ . is the finite alphabet available on the data tape, where Σ ⊆ Γ .,
• . is the blank symbol, where ∈ Γ . and /∈ Σ .,
• δ . is the transition function (also known as the program).

Here, the transition function δ . is described in the context of a Turing machine
M. It specifies the actions to be taken based on the current symbol read from the
tape and the current state of the machine. These actions include erasing the symbol,
writing a new symbol, moving the machine’s head in a certain direction (left or
right), and transitioning to a new state. Specifically, δ : (Q − H) × Γ l→ Q ×
Γ × {R,L, S}., where R and L represent the read-write head moving right and
left, respectively, and S represents no movement. For the case where the read-write
head does not move, it can be replaced by moving left and right once each, so the
transition function can also be defined as δ : (Q − H) × Γ l→ Q × Γ × {R,L}..

The Turing machine M. is in a state q ∈ Q. at any time, state represents the
internal information of the Turing machine at a specific moment. The initial state q0 .

is the state of the Turing machine at the start of execution; if the transition function
stops executing, that is, the current state and the character read by the read-write
head are not defined in δ ., the Turing machine halts; if it halts in an acceptance
state, the computation is successful; otherwise, the computation fails.

Initially, a finite string on Σ . (as input) is written in adjacent squares on the
tape, and the rest of the squares on the tape are empty, the read-write head scans
the leftmost symbol of the input, at this time M is in the initial state q0 ., and in
each subsequent step, M is in the state q ∈ Q.. And the read-write head of M
reads the symbols on the small squares on the subband x ∈ Γ ., then based on δ .,
it performs the corresponding action of (q.x)., including scanning the symbols on
the square and deleting x, writing new symbols, then moving the read-write head
left or right, and obtaining a new state. Here is a simple example to illustrate the
operation mechanism of the Turing machine. Define Turing machine M, its input
alphabet Σ = {1}., finite state set Q = {q1, q2, q3}. (where q1 A q0 .), the input finite
string is 111 11., the state transition function δ . is defined as follows:

That is, δ(q1, 1) = q11R ., δ(q1,) = q21R ., δ(q2, 1) = q21R ., δ(q2,) = q31L.,
δ(q3, 1) = q3 S ., δ(q3,) = q3 S ., where δ(qi, xi) = δ(qj , xj , k)., (xi, xj ∈
{1, }. and k ∈ {R,L, S}.), indicates that when the current state

.

is qi . and the read character is xi ., the action is to change the current state of M to
qj ., write character xj . in the current square, move the read-write head to the right
(k = R)., move to the left (k = L)., or remain unchanged (k = S).. The position
of the initial state q1 . and the specific operation process are shown in Fig. 2.20. If
the number of consecutive 1s represents a specific number, then the above process

2.2 Turing Machine 35

Fig. 2.20 An example of addition operation 3 + 2 = 5.

can implement the addition of the numbers 3 and 2. Therefore, the defined Turing
machine M can implement the addition of any two numbers.

After the concept of the Turing machine was formally proposed, many variants
of the Turing machine were produced, such as multi-tape Turing machines and
probabilistic Turing machines, etc. Here we will introduce the multi-tape Turing
machine in detail. According to the number of tapes read by the Turing machine,
it can be divided into single-tape Turing machines and multi-tape Turing machines.
The previously discussed Turing machine is assumed to be a single-tape Turing
machine. Multi-tape Turing machines use multiple tapes, each with its own read-
write head. Note that any multi-tape Turing machine, no matter how many tapes
it has, can be simulated by a single-tape Turing machine. Therefore, it can be
considered that multi-tape Turing machines and single-tape Turing machines have
the same computational efficiency. The Turing machine is a simple computational
model. Many more complex computers seem to be much stronger than Turing
machines. However, the Church-Turing thesis expresses a general consensus: any
function that can be calculated by a reasonable computational model can be
calculated by a Turing machine. That is to say, these computers do not have stronger
computational capabilities compared to Turing machines. Turing equivalence refers
to the concept in computational theory that two computational models (usually two
Turing-complete models) can simulate and be equivalent to each other. Specifically,
if one computational model can simulate all the computational processes of another
computational model, and vice versa, then these two models are Turing equivalent.
The concept of Turing equivalence originates from the theory of Turing machines.
The Turing machine is an abstract mathematical model that can describe a computer
with infinite storage capacity. Turing proved that as long as a computational
model can achieve the same computational power as a Turing machine, that is,
it can calculate all computable functions, then this model is Turing equivalent.
Most computational models are Turing equivalent, such as λ. calculus and general

36 2 Graphs and Computational Complexity

recursive functions. Turing equivalence means that although they may differ in
form and operation, they can calculate the same set of computable functions, so
theoretically they are equivalent.

2.2.3 Computability

The theory of computability originated from the work of Turing, Church, and
Gödel in the 1930s. The early research on P class and NP class in terms of
computability is deterministic language class and computable enumeration language
class respectively. Let L be a language, then L is determinable if and only if there
exists a Turing machine M that satisfies L = L(M). and M halts for all inputs;
L is semi-decidable if and only if there exists a Turing machine M such that
L = L(M)., that is, there exists a computable “check relation” R(x, y). such that
L = {x|∃yR(x, y)}..

Next, we explore computability from the perspective of functions, that is, viewing
languages as functions from Σ∗

. to Σ .. In this way, not all functions are computable.
The following theorem demonstrates the existence of non-computable functions. In
fact, this theorem proves the existence of non-computable functions with a value
range of {0, 1}.. Non-computable functions with a value range of {0, 1}. are also
undecidable languages.

Theorem 2.12 ([23]) There exists a function UC: {0, 1}∗ → {0, 1}. that cannot be
computed by any Turing machine.

The Halting Problem The function HALT takes an ordered pair as input, and it
outputs 1 if and only if the represented Turing machine will halt on the input within a
finite number of steps [23]. HALT is a function that needs to be computed. Because,
after given a computer program and input, we definitely want to know whether the
program will fall into an infinite loop on this input. If the computer can compute
the HALT function, then designing bug-free computer software and hardware will
become much easier. Unfortunately, it has been proven that the computer cannot
compute this function, even if the running time is allowed to be arbitrarily long.

Theorem 2.13 ([23]) The function HALT cannot be computed by any Turing
machine. UU

Theorem 2.13 shows that the halting problem is undecidable. However, the
halting problem is semi-decidable.

Next, we introduce a basic concept in the theory of computability—reducibility.

Definition 2.1 Let L1 . and L2 . be two languages on symbol sets Σ1 . and Σ2 .

respectively, that is, L1 ⊆ Σ∗
1 . and L2 ⊆ Σ∗

2 .. Then, L1 . is many-to-one reducible
to L2 . (or L1 . is polynomial time reducible to L2 .) if and only if there exists a
computable function f (that is, there exists a deterministic Turing machine M such
that for any x ∈ Σ∗

1 . as input, M can halt in polynomial time and output f (x) :

2.2 Turing Machine 37

Σ∗
1 → Σ∗

2 . such that for all x ∈ Σ∗
1 ., x ∈ L1 . if and only if f (x) ∈ Σ2 .). Use L1 < L2 .

to denote that L1 . is many-to-one reducible to L2 .. The computable function that
satisfies the definition is called a L1 . to L2 . polynomial time transformation.

If L1 < L2 . and L2 . is decidable, then it is easy to infer that L1 . is also
decidable. This discovery can be used to illustrate the undecidability of languages.
For example, if the halting problem can be reduced to a language L in a many-to-one
manner, then L is undecidable. Many-to-one reduction has transitivity.

Theorem 2.14 ([23]) Suppose L1, L2, L3 . are languages on the symbol sets
Σ1,Σ2,Σ3 . respectively, and L1 < L2 . and L2 < L3 ., then L1 < L3 ..

2.2.4 Computational Complexity

Computational complexity is a field in computer science that studies the inherent
difficulty of problems and the resources required to solve these problems. Based on
this, problems can be divided into several classes, such as P class, NP class, coNP
class, etc. Below is a detailed introduction to them.

2.2.4.1 P Class and NP Class

The concepts of P class and NP class were proposed in the 1960s. Simply put, they
provide a basis for measuring the difficulty of problems. The P class is a set of
problems that a deterministic Turing machine can solve in polynomial time, where
polynomial time refers to the transition function of the deterministic Turing machine
executing at most polynomial times. Similarly, the NP class is also a set of problems
that a non-deterministic Turing machine can solve in polynomial time.

(1) Description of P/NP Problem
In general, P class and NP class problems are decision problems, that is, problems
that only require a “yes” or “no” answer. Specifically, decision problems can be
described in language. Let Σ . be a finite alphabet with at least two elements, and let
Σ∗

. be the set of all finite strings over Σ .. Then, a language over Σ . is a subset L of
Σ∗

.. For a Turing machine M with an input symbol set Γ . and an input w, if M halts
in an accepting state, then M is said to accept w; otherwise, M is said to reject w.
Let L(M). denote the set of all languages by M:

. L(M) = {w ∈ Σ∗|M accepts w}

For an input w, let tM(w). denote the number of times the transition function is
executed by machine M when it halts. If M never halts, then tM(w). is undefined (or
can be considered as ∞. if we are discussing the theoretical limit). For any natural
number n, let TM(n). represent the maximum number of times the transition function

38 2 Graphs and Computational Complexity

is executed by M when it halts for all n:

. TM(n) = max{tM(w)|w ∈ Σn},

where Σn
. denote the set of all strings of length n. over the alphabet Σ .. If there exists

a constant k . such that TM(n) ≤ nk +k . for all n., then the running time of machine M
is said to be polynomial. Based on this, the class P is defined as the set of languages
accepted by Turing machines that operate in polynomial time:

. P = {L|L = L(M),M is a Turing machine with polynomial running time}.

NP stands for “Nondeterministic Polynomial time”. To provide a formal defini-
tion, we first introduce the concept of a “checking relation”. A checking relation is
a binary relation R ⊆ Σ∗ × Σ∗

1 ., where Σ∗
. and Σ∗

1 . are two finite sets of symbols.
Each checking relation R . is associated with a language LR . on Σ∗ ∪Σ∗

1 ∪{#}., where
/∈ Σ . and LR = {w#y | R(w, y)}., then R . is said to be polynomial time if and
only if LR ∈ P .. Based on this, a formal definition of the NP class can be given:

A language L. on Σ . belongs to the NP class if and only if there exists a constant
k . and a polynomial time checking relation R . such that for all w ∈ Σ∗

.,

. w ∈ L ⇔ ∃y(|y| < |w|k and R(w, y)),

where |w|. and |y|. represent the lengths of w and y respectively.

Question 2.1 Is P=NP?

It is easy to see that the answer to Question 2.1 is not limited by the size of the
symbol set Σ . (assuming |Σ | ≥ 2.), this is because any given size of symbol set can
be encoded into a binary symbol set.

P ⊆ NP. is trivial, this is because: for a language L on the symbol set Σ ., if L ∈ P.,
then we can define a polynomial time checking relation R ⊆ Σ∗ × Σ∗

. as follows:
for any w, y ∈ Σ∗

., R(w, y). is true if and only if w ∈ L..
Question 2.1 has always been an intricate open question and remains a focus of

research at the time of writing this book.

(2) NP-complete Problems
If a problem belongs to NP, and all problems in NP can be reduced to it in
polynomial time, then the problem is called NP-complete. The NP-complete class
refers to the set of all NP-complete problems. The concept of the NP-complete
class was proposed by scientists in North America and the Soviet Union in the late
1960s and early 1970s. It is a subset of the NP class, and these problems have
significant research significance. The proposal of the NP-complete class deepened
people’s understanding of P and NP problems, because if it is proven that an NP-
complete problem belongs to the P class, then it also proves that P=NP.

Polynomial time computation was first proposed in the 1960s by Cobham [24]
and Edmonds [25]. Edmonds [25] referred to polynomial time algorithms as “good

2.2 Turing Machine 39

algorithms” and linked them to easy-to-handle algorithms. In 1971, Cook [26]
introduced the concept of NP-completeness and proved that several problems are
NP-complete, including 3-SAT and subgraph isomorphism problems, etc. These
results were subsequently utilized by Karp [27], who proved that 21 problems are
NP-complete. Karp proposed the standard concepts of P and NP, and redefined NP-
completeness through polynomial time many-to-one reduction, where polynomial
time algorithms refer to algorithms with a running time at most nk

. for inputs of
size n, where k is a constant. Since then, research on computational complexity has
received widespread attention.

The standard definition of NP-complete ness is very similar to the above
definition.

Definition 2.2 Let L1 . and L2 . be two languages on symbol sets Σ1 . and Σ2 .

respectively, i.e., L1 ⊆ Σ∗
1 . and L2 ⊆ Σ∗

2 .. Then, L1 . is p-reducible to L2 ., denoted
as L1 <p L2 ., if and only if there exists a polynomial time computable function
f : Σ∗

1 → Σ∗
2 . such that for all x ∈ Σ∗

1 ., x ∈ L1 . if and only if f (x) ∈ L2 ..

Definition 2.3 A language L. is NP-complete if and only if L. belongs to NP and
for every language L'

. that belongs to NP, the polynomial-time reducibility L' <p L.

holds.

It is easy to prove that <p . is also transitive, hence the following conclusion.

Theorem 2.15

(1) If L1 <p L2 . and L2 ∈ P., then L1 ∈ P.;
(2) If L1 . is NP-complete, L2 ∈ NP. and L2 <p L1 ., then L2 . is NP-complete.
(3) If L. is NP-complete and L ∈ P., then P = NP.

UU
Theorem 2.15(2) provides a fundamental method for proving that a new problem

is NP-complete, and also illustrates that any two NP-complete problems can be
transformed into each other in polynomial time. Therefore, if one NP-complete
problem can be solved in polynomial time, then all other problems can also be
solved in polynomial time [which is also the implication of Theorem 2.15(1)].
Theorem 2.15 (3) suggests that the search for a polynomial-time algorithm for NP-
complete problems is likely futile.

Roughly speaking, P class problems are those that can be solved in polynomial
time, that is, problems that can be solved within O(nk)., where k is a constant, and
n is the size of the problem input. Problems in the NP-class are “verifiable” in
polynomial time, that is, given a solution to a problem, it can be verified whether it
is correct within polynomial time of the problem input size. In other words, for NP
problems, there may not be a known fast method to get the answer to the problem,
but if a candidate answer is given, it can be verified in polynomial time whether the
answer is a solution to the known problem. Therefore, any problem in the P class
belongs to the NP class, because any problem can be solved in polynomial time,
then given a solution to a problem, it can definitely be verified for its correctness
in polynomial time. NP-complete problems are a subset of NP problems, and are

40 2 Graphs and Computational Complexity

the most difficult problems in the NP class. There is also a class called NP-hard
problems, which are problems that NP problems can be p-reduced to. In a word,
their characteristic is “problems that are at least as hard as NP problems”, that
is, NP-hard problems are at least as hard as NP problems. Obviously, NP-hard
problems may belong to NP or may not belong to NP, they may be undecidable
problems. For more introductions to complexity theory, please refer to the works of
Paradimitriou [28] and Sipser [29].

(3) SAT Problem
Theorem 2.15 (2) provides a method for proving NP-complete problems, however,
to prove a new problem is NP-complete, it still needs to rely on a known NP-
complete problem. This raises a question: how was the first NP-complete problem
obtained? In fact, the first NP-complete problem was not obtained through the above
method, but through theories related to Turing machines. Cook [26] first obtained
such a problem in 1971, namely the satisfiability problem (SAT problem), which is
introduced below.

Members of the NP problem can be represented as decision problems (questions
that only need to answer yes or no), and the corresponding language can be
understood as a collection of some strings, where these strings encode “YES”
instances into decision problems through standard encoding methods. Based on this,
the SAT problem can be described as follows:

Problem 2.1 (SAT Problem) Given a propositional formula F . composed of con-
junction (∧.), disjunction (∨.), and negation (¬.), determine whether F . is satisfiable.

The SAT problem is a type of constraint satisfaction problem, its decision
problem is whether there exists a set of variable assignments that make the
proposition true. In a Boolean formula, it contains such components: Boolean
variables (taking values of 0 or 1), Boolean connectives (conjunction, disjunction,
negation), parentheses. For a Boolean formula, if there exists some assignment of
0 or 1 to its variables that makes the truth value of the formula 1, then it is called
satisfiable. Based on this, an instance of the SAT problem is a Boolean formula ϕ .

composed of the following components:

(1) n. Boolean variables, x1, x2, . . . , xn ..
(2) m. Boolean connectives. The Boolean connectives include ∧. (AND), ∨. (OR),

and ¬. (NOT).
(3) Parentheses. It is assumed that there are no redundant parentheses, meaning

each Boolean connective has at most one pair of parentheses.

For example, for the formula (x1 ∨¬x1 ∨x3)∧ (¬x1 ∨x3)∧ (x2 ∨¬x3)., when its
variable truth value assignment is x1 = 0., x2 = 1. and x3 = 1., then the truth value
of this formula is 1, so it is satisfiable. But not all Boolean formulas are satisfiable;
for example, x ∧¬x1 . is unsatisfiable. Note that all NP problems can be transformed
into SAT problems.

Since for a given Boolean formula and any assignment of variables, it can be
verified in polynomial time whether the Boolean formula is true, the SAT problem

2.2 Turing Machine 41

belongs to the NP class. Specifically, a polynomial-time checking relation R(x, y).

is defined, where x . and y . are related by R . if and only if x . encodes a propositional
formula F . and y . encodes a set of truth assignments to the variables in F . that make F .

satisfiable. Cook [26] proved in 1971 that the SAT problem is NP-complete (Levin
[30] also proved this in 1973). Cook’s method involved demonstrating that for
every polynomial-time Turing machine M ., if M . can recognize the checking relation
R(x, y). of an NP language L., then there exists a polynomial-time algorithm A.

such that: A. accepts a string x . as input and generates a corresponding propositional
formula Fx . where Fx . is satisfiable if and only if M . accepts (x, y). for some string
y . of length less than or equal to |x|O(1)

.. For the detailed proof, one can refer to the
literature [31].

Theorem 2.16 The SAT problem is NP-complete. UU
Based on Theorem 2.16, a new problem may be proven to be NP-complete using

p-reduction from the SAT problem. In addition, if B ∈ NP . cannot be proven, then
we say the corresponding problem B is NP-hard.

From Theorem 2.16 and the transitivity of p-reduction, all NP problems can be
reduced to SAT problems. That is to say, if the SAT problem is solved, all NP
problems are solved. This also shows from another aspect that all NP-complete
problems are polynomial time equivalent.

An important special case of the SAT problem is 3-SAT, which is introduced
below.

Problem 2.2 (3-SAT Problem) Let X = {x1, x2, . . . , xn}. be a finite set of Boolean
variables, where each xi ∈ {0, 1}.. Let C = C1 ∧ C2 ∧ · · · ∧ Cm . be a conjunctive
normal form, where each Ci . is a disjunction of three variables. The question is
whether there exists a truth assignment to the variables in X . such that C . is true, i.e.,
each Ci . is true.

To illustrate the p-reduction strategy, a detailed proof that the 3-SAT problem is
NP-complete is presented below. This proof originates from Cook [26].

Theorem 2.17 The 3-SAT problem is NP-complete.

Proof Firstly, since the SAT problem belongs to the NP class, the 3-SAT problem
also belongs to the NP class. Next, we prove SAT <p . 3-SAT. Let φ . be a Boolean
formula in conjunctive normal form. In polynomial time, construct a new Boolean
formula ψ . in conjunctive normal form such that:

• Each clause of ψ . contains 3 variables.
• φ . is satisfiable if and only if ψ . is satisfiable.

If a clause in φ . contains only 1 variable, say x, then replace this clause with 4
clauses, each containing 3 variables, where y and z are two new variables as follows.

.x = (x ∨ y ∨ z) ∧ (x ∨ ¬y ∨ z) ∧ (x ∨ y ∨ ¬z) ∧ (x ∨ ¬y ∨ ¬z).

42 2 Graphs and Computational Complexity

If a clause in φ . contains only 2 variables, say x1 ∨ x2 ., then replace this clause
with 2 clauses, each containing 3 variables, where w is a new variable. That is,

. (x1 ∨ x2) = (x1 ∨ x2 ∨ w) ∧ (x1 ∨ x2 ∨ ¬w)

Now consider a clause in φ . containing k variables x1, x2, · · · , xk ., where k ≥ 4..
In this case, add k − 3. new variables y1, y2, · · · , yk−3 . and construct the following
k − 2. clauses, each containing 3 variables:

. (x1 ∨ x2 ∨ y1), (¬y1 ∨ x3 ∨ y2), . . . , (¬yk−4 ∨ xk−2 ∨ yk−3), (¬yk−3 ∨ xk−1 ∨ xk).

It is easy to verify that the conjunction of these clauses is equivalent to the
original clause. Therefore, φ . is satisfiable if and only if ψ . is satisfiable, which proves
SAT <p . 3-SAT. UU

As research continues, an increasing number of NP-complete problems have
been identified, such as the Subset Sum Problem (whether there exists a subset in
a given set of positive integers whose sum equals a predetermined target value),
and graph problems [for example, given a graph G., does G. contain a Hamiltonian
Cycle? Does G. have a 3-coloring? Does G. have an independent set of k . vertices?]
Reference [31] provides a detailed introduction to the study of NP-complete
problems and lists 300 NP-complete problems. According to incomplete statistics,
there are at least several thousand NP-complete problems discovered to date.

There are also some interesting problems within the NP class (such as the graph
isomorphism problem, which determines whether two given undirected graphs are
isomorphic). As of the date of publication of this book, it is still unknown whether
they belong to the P class or are NP-complete.

On May 24, 2000, the Clay Mathematics Institute (CMI) announced seven
mathematical problems at a conference held at the École Polytechnique in Paris
(also known as the Paris Millennium Meeting), with a total reward of $7 million
for their solutions. Hence they are referred to as the Millennium Prize Problems
[32]. According to their rules, solving each problem comes with a reward of $1
million [33]. The P/NP problem is the first of these seven problems, highlighting its
extraordinary significance. The problem aims to determine whether every language
that can be accepted by a non-deterministic algorithm in polynomial time can also
be accepted by some deterministic algorithm in polynomial time. Here, “polynomial
time” refers to the upper bound of the algorithm’s running time being a polynomial
function of the input size.

Regarding this question, a survey of one hundred experts in mathematics and
computer science was published in 2001, with 61 respondents providing a negative
answer [34]. In 2012, William [35] conducted the survey again, and 84 individuals
gave a negative response, suggesting that P /=.NP. As for the P/NP problem, as early
as 1970, Cook and Levin proved that if there exists an NP-complete problem that
is solvable in polynomial time, then all NP problems are solvable in polynomial
time [36]. Therefore, it is only necessary to study one such problem. To precisely

2.2 Turing Machine 43

describe the P/NP problem, one must rely on a formal model of computation. In
computational theory, the standard model of computation is the Turing machine
[21]. Although the Turing machine was proposed before the physical computer
was constructed, it has always been considered an appropriate model for defining
computable functions.

2.2.4.2 coNP Problem

The coNP class is also a collection of problems. As its name suggests, the coNP
class is related to the NP class and can be defined in terms of NP. Here is an
alternative definition of coNP. For a language L ⊆ Σ∗., if there exists a polynomial
function f : N → N. and a polynomial-time Turing machine M, such that for any
x ∈ Σ∗

.,

. x ∈ L ⇔ ∀u ∈ Σf (x),M(x, u) = 1,

then L. is in coNP, where M(x, u) = 1. indicates that the Turing machine M . accepts
the pair (x, u)..

coNP and coNP-complete relationship is similar to NP and NP-complete rela-
tionship. Simply put, coNP.-complete ⊆.coNP, and coNP-complete is composed
of the most difficult problems in coNP. That is to say, all problems in coNP can
be polynomially reduced to problems in coNP-complete. It is currently unknown
whether coNP and NP are equal. However, under the assumption that coNP /= NP.,
it can be proved that: NP-hard and coNP do not intersect. Note that if coNP /= NP.,
then NP.-complete ∩. coNP = ∅. and NP ∩ coNP.-complete = ∅. [37].

Theorem 2.18 If coNP /= NP., then NP-hard ∩ coNP = ∅..

Proof Assume there exists a language L ∈ NP-hard ∩ coNP.. According to the
definition of coNP, there exists a polynomial p : N → N. and a polynomial time
Turing machine M, such that for any x ∈ Σ∗

. we have x ∈ L. if and only if for
any u ∈ Σp(x)

., M(x, u) = 1.. Also according to the definition of NP-hard, there
exists a language L' ∈ NP -complete. such that L' <p L.. Therefore, there exists a
polynomial time computable function f : Σ → Σ . such that for any x ∈ Σ∗

. we
have x inL' ⇔ f (x) ∈ L.. Combining the above two definitions, for any x ∈ Σ∗

.

we have x ∈ Σ∗ ⇔ ∀u ∈ Σp(x)
., M(f (x), u) = 1.. Note that the composite

operation of polynomials satisfies closure. Therefore, the definition of coNP, L' ∈
coNP. contradicts with NP − complete ∩ coNP = ∅.. UU

For coNP, the following theorem is obvious.

Theorem 2.19 P ⊆ NP ∩ coNP..

So far, we have introduced the P class, NP class, NP-hard class, NP-complete
class, coNP class, and coNP-complete class. Figure 2.21 shows their relationships.

44 2 Graphs and Computational Complexity

Fig. 2.21 The relationship
between different classes of
problems

References

1. Xu, J.: The Theory of Maximal Planar Graphs (Vol. 1: Structure-Construction-Coloring).
Science Press, Beijing (2019).

2. Bang, J., Gutin, G.: Theory, Algorithms, and Applications of Directed Graphs. Translated by
Yao, B., Zhang, Z.F. Science Press, Beijing (2009).

3. Bondy, J.A., Murty, U.S.R.: Graph Theory with Applications. Springer, New York (2008).
4. Lovász, L.: On the Shannon capacity of a graph. IEEE Trans. Inf. Theory 25(1), 1–7 (1979).
5. Babai, L.: Graph isomorphism in quasipolynomial time. In: Proceedings of the Forty-eighth

Annual ACM Symposium on Theory of Computing, pp. 684–697 (2016).
6. Grohe, M., Schweitzer, P.: The graph isomorphism problem. Commun. ACM 63(11), 128–134

(2020).
7. McKay, B.D., Min, Z.K.: The value of the Ramsey number R(3, 8). J. Graph Theory 16(1),

99–105 (1992).
8. McKay, B.D., Radziszowski, S.P.: R(4, 5) = 25. J. Graph Theory 19(3), 309–322 (1995).
9. Brooks, R.L.: On colouring the nodes of a network. Proc. Cambridge Philos. Soc. 37, 194–197

(1941).
10. Vizing, V.G.: On an estimate of the chromatic class of a p-graph (Russian). Diskret. Analiz. 3,

25–30 (1964).
11. Gupta, R.P.: The chromatic index and the degree of a graph. Notices Amer. Math. Soc. 13,

abstract 66T-429 (1966).
12. Behzad, M.: Graphs and their chromatic numbers. Ph.D. dissertation, Michigan State Univer-

sity, Michigan, United States (1965).
13. Vizing, V.G.: Some unsolved problems in graph theory. Russ. Math. Surv. 23, 125–142 (1968).
14. Zykov, A.A.: On some properties of linear complexes (Russian). Math. Sbornik 24, 163–188

(1949).
15. Boppana, R.: Approximating maximum independent sets by excluding subgraphs. Springer

Berlin Heidelberg 32(2), 13–25 (1990).
16. Welsh, D.J.A., Powell, M.B.: An upper bound on the chromatic number of a graph and its

application to timetabling problems. Comput. J. 10, 85–87 (1967).
17. Kokosinski, Z., Kwarciany, K., Kolodziej, M.: Efficient graph coloring with parallel genetic

algorithms. Comput. Informatics 24, 123–147 (2005).
18. Xu, J., Qiang, X., Zhang, K., et al.: A parallel type of DNA computing model for graph vertex

coloring problem. In: Proceedings of the IEEE Fifth International Conference on Bio-inspired
Computing: Theories and Applications, pp. 231–235 (2010).

19. Dempster, M.A.H.: Two algorithms for the time-table problem. In: Welsh, D.J.A. (ed.)
Combinatorial Mathematics and its Applications, pp. 63–65. Academic Press, New York
(1971).

20. de Werra, D.: On some combinatorial problems arising in scheduling. Canad. Oper. Res. Soc.
J. 8, 165–175 (1970).

References 45

21. Turing, A.M.: On computable numbers, with an application to the Entscheidungsproblem.
Proc. Lond. Math. Soc. 2(42), 230–265 (1936).

22. Turing, A.M.: Systems of logic based on ordinals. Proc. Lond. Math. Soc. Ser. 2 45, 161–228
(1939).

23. Sanjeev, A., Barak, B.: Computational Complexity: A Modern Approach. Cambridge Univer-
sity Press, Cambridgeshire, England (2009).

24. Cobham, A.: The intrinsic computational difficulty of functions. In: Bar-Hille, Y. (ed.)
Proceedings of the 1964 International Congress for Logic, Methodology, and Philosophy of
Science, pp. 24–30. Elsevier/North-Holland, Amsterdam (1964).

25. Edmonds, J.: Minimum partition of a matroid into independent subsets. J. Res. Nat. Bur.
Standards Sect. B 69, 67–72 (1965).

26. Cook, S.: The complexity of theorem-proving procedures. In: ACM Symposium on Theory of
Computing, pp. 151–158. ACM, New York (1971).

27. Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E., Thatcher, J.W. (eds.)
Complexity of Computer Computations, pp. 85–103. Plenum Press, New York (1972).

28. Papadimitriou, C.: Computational Complexity. Addison-Wesley, Boston (1994).
29. Sipser, M.: Introduction to the Theory of Computation. PWS Publ., Boston (1997).
30. Levin, L.: Universal search problems (in Russian). Problemy Peredachi Informatsii 9, 265–266

(1973).
31. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-

Completeness. W.H. Freeman and Co., San Francisco (1979).
32. Jaffe, A.M.: The Millennium Grand Challenge in Mathematics. Notices of the AMS, 652

(2000).
33. Carlson, J.A., Jaffe, A., Wiles, A.: The Millennium Prize Problems. American Mathematical

Society and Clay Mathematics Institute, Providence, RI (2006).
34. Gasarch, W.: The P=?NP poll. ACM SIGACT News 33(2), 34–47 (2002).
35. Gasarch, W.: Guest Column: The second P=?NP poll. ACM SIGACT News 43(2), 53–77

(2012).
36. Siper, M.: Introduction to the Theory of Computation. Translated by Tang, C.J., Chen, P.,

Xiang, Y., Liu, Q.H. Mechanical Industry Press, Beijing (2000).
37. Hartmanis, J., Immerman, N.: On complete problems for NP ∩. coNP. In: Proceedings of the

12th Colloquium on Automata, Languages and Programming, pp. 250–259. Springer Berlin
Heidelberg, Nafplion, Greece (1985).

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Chapter 3
Biological Computing: Data

As known from Chap. 1, biological computing is divided into DNA computing,
RNA computing, and protein computing. The data used are DNA, RNA, and
proteins, respectively. This chapter mainly introduces the physical and chemical
characteristics and computational characteristics of these three types of biological
macromolecules, which are the basis of biological computing.

3.1 DNA Molecules

DNA molecules generally exist in the form of high-molecular-weight double
strands. Changes in the microenvironment and molecular composition can also form
single-strand, triple-strand, quadruple-strand DNA molecules, and even DNA\RNA
hybrid molecules [1]. Each single-strand DNA is composed of a sequence of
deoxyribonucleotides, each of which can be represented by its alkaline molecule.
Therefore, the sequence of deoxyribonucleotides is composed of repeatable char-
acters A,T,G,C. The connection method of adjacent deoxyribonucleotides is a
phosphodiester covalent bond. DNA single-strand molecules form DNA double
strands through hydrogen bond attraction, and double-strand DNA in the body will
further twist and compress to form a higher-order structure, used for life genetic
information storage and physiological activity regulation (Fig. 3.1).

DNA computing is a new type of computing mode that uses DNA molecules as
data and biological enzymes or biochemical operations as information processing
“tools” [2]. In the DNA computation model, the data, namely DNA molecules,
need to be given a DNA encoding. DNA encoding is not only necessary for DNA
computation, but also for the entire genetic engineering and DNA storage. We will
discuss this in detail in Chap. 5. The structure and characteristics of DNA molecules
are the cornerstone of DNA computation, which will be introduced in detail below,
and you can also refer to reference [2].

© The Author(s) 2025
J. Xu, Biological Computing, https://doi.org/10.1007/978-981-96-3870-3_3

47

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-96-3870-3protect T1	extunderscore 3&domain=pdf
https://doi.org/10.1007/978-981-96-3870-3_3
https://doi.org/10.1007/978-981-96-3870-3_3
https://doi.org/10.1007/978-981-96-3870-3_3
https://doi.org/10.1007/978-981-96-3870-3_3
https://doi.org/10.1007/978-981-96-3870-3_3
https://doi.org/10.1007/978-981-96-3870-3_3
https://doi.org/10.1007/978-981-96-3870-3_3
https://doi.org/10.1007/978-981-96-3870-3_3
https://doi.org/10.1007/978-981-96-3870-3_3
https://doi.org/10.1007/978-981-96-3870-3_3
https://doi.org/10.1007/978-981-96-3870-3_3

48 3 Biological Computing: Data

Fig. 3.1 Schematic diagram
of DNA molecule
composition and structure

Fig. 3.2 Molecular structure
of deoxyribose

Fig. 3.3 Four nitrogenous
bases

3.1.1 Deoxyribonucleic Acid

Deoxyribonucleic acid is covalently condensed from one molecule of phosphoric
acid, one molecule of pentose, and one molecule of organic base. The pentose in
DNA is 2-deoxyribose, that is, the hydroxyl group on the 2-position of ribose is
replaced by hydrogen (see Fig. 3.2).

DNA molecules have two types of nitrogenous bases: purines and pyrimidines.
From an organic chemistry perspective, purines have a double-ring molecular
structure, while pyrimidines have a single-ring molecular structure. Purines are
generally divided into adenine (A) and guanine (G); pyrimidines are divided into
thymine (T) and cytosine (C). Their names and molecular structures are shown in
Fig. 3.3.

3.1 DNA Molecules 49

Fig. 3.4 Four
deoxyribonucleosides

The 1st C atom on the pentose molecule is connected to the 9th N atom on the
purine or the 1st N atom on the pyrimidine by a β . type C-N glycosidic bond to form
a nucleoside. There are commonly four types of deoxyribonucleosides according
to the base difference: deoxyadenosine, deoxyguanosine, deoxythymidine, and
deoxycytidine. Figure 3.4 shows the structures of these four deoxyribonucleosides.

In the complex physiological and biochemical environment within the organism,
the hydroxyl group on the pentose ring structure undergoes a key chemical
modification of phosphorylation. This process is an important step in the formation
of nucleotides, which then play an indispensable role in life activities such as DNA
replication. From the perspective of organic chemical structure, the nucleoside and
the phosphate groups are closely connected by esterification reactions, together
building the basic structural framework of deoxyribonucleic acid. Specifically, the
combination of pentose and phosphoric acid molecules forms deoxyribonucleic
acid, such as the typical representative deoxythymidine monophosphate (dTMP),
where the ‘d’ prefix clearly identifies its deoxy- (deoxy-) characteristic. As shown
in Fig. 3.5, although the four different types of deoxyribonucleic acids have different
side chain bases, they share a similar core skeleton structure. In this structure,
the binding point of the phosphate group and deoxyribose (i.e., 2-deoxyribose) is
precisely located on the 3’ or 5’ carbon atom of the deoxyribose molecule. This
specific binding mode not only provides stable chemical support for the linear
extension of the DNA chain, but also ensures the stability of the DNA double helix
structure and the accurate transmission of genetic information.

50 3 Biological Computing: Data

Fig. 3.5 Four types of deoxyribonucleotides

3.1.2 DNA Molecular Structure

A monophosphate nucleotide refers to those nucleotides that only contain one
phosphate group. When multiple such nucleotides are sequentially connected by
phosphate and pentose (i.e., deoxyribose) to form a long chain, they constitute the
basic building blocks of DNA: polynucleotide molecules. The primary structure
of DNA describes the arrangement order of these deoxyribonucleotides in the
DNA molecule (also often referred to as the base sequence) and the way they
are connected by specific chemical bonds. Specifically, the polynucleotide chain of
DNA is composed of four different types of deoxyribonucleotides, which may vary
in number, and are tightly connected by 3’ to 5’ phosphodiester bonds. Therefore,
the main chain structure of DNA presents a linear long chain feature of alternating
phosphate groups and deoxyribose. For linear DNA molecules, it has two free ends:
one end is the end of deoxyribose at the 5’ position with a hydroxyl (-OH) group,
known as the 5’ end; the other end is the end of deoxyribose at the 3’ position with
a hydroxyl group, known as the 3’ end. When describing the primary structure of
DNA, we usually follow the writing direction from the 5’ end to the 3’ end, which
is intuitively demonstrated in part of Fig. 3.6a.

The secondary structure of DNA molecules is the famous double helix structure
model proposed by Watson and Crick in 1953 (as shown in Fig. 3.6b). The core
features of this model are summarized as follows:

• Double helix structure: The DNA molecule is composed of two antiparallel
polydeoxyribonucleotide chains, which tightly wind around a common central
axis in a right-handed helical manner, forming a stable double helix structure.

• Main chain and base position: The backbone of each chain is alternately
connected by phosphate groups and deoxyribose, these backbones are located

3.1 DNA Molecules 51

Fig. 3.6 DNA molecular structure

on the outside of the double helix, while the bases are on the inside, arranged
perpendicular to the central axis of the helix. The surface of the double helix
presents two helical grooves, namely the major groove and the minor groove,
which play an important role in the interaction of DNA with other molecules.

• Geometric parameters: The diameter of the double helix is about 2 nm, and each
rotation around the central axis contains about 10 base pairs, forming a helical
period. The pitch of the entire helix (i.e., the height of the helix for each complete
rotation) is 3.4 nm, and the distance between adjacent base pairs is 0.34 nm.
These precise dimensions ensure the stability of the DNA double helix structure.

• Base pairing: In the double helix structure, two adjacent bases pair with each
other through hydrogen bonds. Specifically, adenine (A) forms two hydrogen
bonds with thymine (T), while guanine (G) forms three hydrogen bonds with
cytosine (C). This specific pairing method not only maintains the stability of
the double helix structure but also ensures the accurate transmission of genetic
information.

As for the tertiary structure of DNA, it refers to the complex structure formed
by the further spatial folding and twisting of the double-stranded DNA molecule.
Among them, the superhelix is an important form of the tertiary structure (as shown
in Fig. 3.6c), which further increases the compactness and stability of the DNA
molecule and is of great significance for the packaging and storage of DNA in cells.

The importance of base pairing as one of the core characteristics of DNA
molecules is self-evident, whether in biological processes in nature, in the appli-
cation of artificial technologies such as genetic engineering, or in the field of DNA
computing deeply explored in this book, this property occupies a fundamental and
crucial position. To intuitively demonstrate this principle, we provide a schematic
diagram of base pairing in Fig. 3.7. The double-stranded structure of DNA is
based on the complementary pairing of bases, which are tightly wound into a
unique double helix shape through the formation of hydrogen bonds. Due to the

52 3 Biological Computing: Data

Fig. 3.7 Base pairing in DNA double strands

clever arrangement of geometric configuration and chemical properties, adenine (A)
specifically pairs with thymine (T), and guanine (G) matches with cytosine (C).
Specifically, A and T can stably form two hydrogen bonds, while G and C can form
three more stable hydrogen bonds. This precise pairing method not only ensures the
stability of the DNA structure but also makes the paired bases strictly arranged on
the same plane, further enhancing the integrity and functionality of the double helix
structure.

3.1.3 Types of DNA Molecules

In DNA computing research, we will involve single-stranded DNA molecules,
double-stranded DNA molecules, triple-stranded DNA molecules, hairpin DNA
molecules, circular DNA molecules, etc. The concept of triple-stranded DNA
molecules is given in reference [1], and the rest are introduced separately in this
section.

3.1.3.1 Single-Stranded DNA

Single-stranded DNA molecules are essentially a manifestation of the primary
structure of DNA, which appears as a linear sequence of nucleotides tightly
connected by phosphodiester bonds. In the primary structure of DNA, the combi-

3.1 DNA Molecules 53

nation mode of phosphate and deoxyribose is constant, while the variable is the
base sequence carried by these nucleotides. Therefore, we usually simplify this
nucleotide sequence to discuss the base sequence and habitually use A (adenine),
C (cytosine), G (guanine), and T (thymine) as representatives to indicate different
bases. For example, the base sequence of the DNA sequence in Fig. 3.6a can be
intuitively represented by the combination of these letters:

5’ACTG3’

In the field of DNA computing, single-stranded DNA molecules have been
widely regarded as the basic data unit for information processing. For example,
in Adleman’s pioneering work, he cleverly used single-stranded DNA molecules
to represent the vertices of the graph when constructing a DNA computing model
to solve the Hamiltonian path in a directed graph. Specifically, he designed a
representation method for each edge, which is formed by taking half of the
DNA sequences corresponding to the two vertices connected by the edge and
concatenating them. Subsequently, using the complementary chains of these edge-
corresponding sequences as templates, hybridization reactions are triggered to
screen out the required directed paths. This process fully demonstrates the unique
advantages and potential of single-stranded DNA molecules as information carriers
in DNA computing.

3.1.3.2 Double-Stranded DNA

In the field of DNA computing, some models directly use double-stranded DNA
molecules as the basic unit for encoding data. However, fundamentally, whether
single-stranded or double-stranded DNA is used for encoding, there is no essential
difference in the context of DNA computing. The reasons are mainly two: first,
single-stranded DNA molecules often naturally form double-stranded structures
through hybridization reactions during the DNA computing process; second, based
on the Watson-Crick complementarity principle, once we know the sequence of a
single-stranded DNA molecule, we can deduce its corresponding double-stranded
DNA molecule structure, and vice versa. Therefore, in the specific practice of
DNA computing, we should flexibly choose to use single-stranded or double-
stranded DNA molecules according to the actual needs of the problem. This article
only proposes a specific marking system for double-stranded DNA molecules for
subsequent discussion and analysis.

For a given double-stranded DNA molecule, such as

. X = 5'ACTGTTAAGA3'

3'TGACAATTCT5'

Usually, the corresponding lowercase English letters are used to represent the
single-stranded DNA molecule from the 5’ end to the 3’ end in the double-stranded
DNA molecule, that is, the upper half of the double strand, and the lowercase

54 3 Biological Computing: Data

English letters are used to represent the single-stranded DNA molecule from the
3’ end to the 5’ end in the double-stranded DNA molecule, that is, the lower half of
the double strand. So, for the above example, we have: x = 5'ACTGTTAAGA3'

.

or x = 5'ACTGTTAAGA3'
.. Sometimes, when there is no confusion, the 5’-

end and 3’-end are omitted. For example, for the above example, we have:
x = ACTGTTAAGA.. We call x. the upper chain of X., and x. the lower chain of
X.. We call x. and x. complementary chains. The double-stranded DNA molecule X.

is usually abbreviated as

. X = δ(x)

That is, the single-stranded DNA molecule x. can generate the double-stranded DNA
molecule X..

3.1.3.3 Hairpin DNA

Under certain conditions, longer single-stranded DNA molecules can use the attrac-
tion of hydrogen bonds to follow the Watson-Crick base pairing rules, that is, A
(adenine) and T (thymine), G (guanine) and C (cytosine) form stable hydrogen bond
connections. This pairing process promotes some single-stranded DNA molecules to
combine with each other through hybridization to form a double-stranded structure,
while some single-stranded DNA molecules do not participate in hybridization and
maintain their original single-stranded state. Take a specific single-stranded DNA
molecule as an example:

. x = 5'ACTGTTAAGAGGGGATTATTCTTAACAGT3'

Clearly, the first 10 bases and the last 10 bases follow the Watson-Crick
base pairing principle, forming a complementary correspondence. Under specific
conditions, the pairing action between these bases prompts the DNA molecule to
fold into a unique structure, as shown in Fig. 3.8. This structure has a stable double-
stranded region at one end and a circular structure at the other end. This special
DNA molecule configuration is called “hairpin DNA molecule” or simply “hairpin
DNA”. In the hairpin DNA molecule, we call the tightly paired double-stranded part
the “stem”, and the circular region composed of unpaired bases is called the “loop”.

Hairpin DNA molecules occupy a pivotal position in the field of DNA computing
and DNA computer research. Its importance is reflected in several aspects: First,

Fig. 3.8 Hairpin DNA
structure

3.1 DNA Molecules 55

Fig. 3.9 Principle of
molecular beacon

Fig. 3.10 Types of DNA molecules with sticky ends

hairpin DNA molecules are cleverly designed and used to make molecular beacons.
The basic structure of this beacon is shown in Fig. 3.9. It is mainly used in DNA
computing to solve solution detection, providing a powerful tool for verifying
experimental results. Secondly, hairpin DNA molecules directly participate in the
DNA computing process and become a key component of the DNA computing
model for constructing solutions to satisfiability problems and other complex
computing tasks. Furthermore, hairpin DNA molecules show great potential in the
research of DNA computer models in the field of disease diagnosis and treatment.
The stem part can specifically recognize target molecules as diagnostic probes, and
the loop part may carry DNA sequences that inhibit disease development, providing
new ideas for precision medicine. This pioneering work in this field was first carried
out by the research group led by Israeli scholar Ehud Shapiro, and further expanded
and deepened in subsequent research. Related results can be seen in reference [3].

3.1.3.4 DNA with Sticky Ends

The DNA molecule structure shown in Fig. 3.10 is DNA with sticky ends. In the
practice of DNA computing, this type of DNA molecule data with sticky ends
usually needs to be obtained through artificial synthesis or enzyme cutting reactions.
As an important carrier of information processing, they have shown a wide range

56 3 Biological Computing: Data

of application prospects in the field of DNA computing. For example, they have
been successfully applied to the paste DNA computing model and the graph vertex
coloring DNA computer model, showing their unique advantages in dealing with
complex graph theory problems. More broadly speaking, DNA molecules with
sticky ends have potential application value in almost all areas of graph theory
research. For a deeper understanding of the specific applications and advantages of
these molecules in DNA computing, refer to references [4–6], which discuss their
in-depth applications and frontier progress in this field.

3.1.3.5 Plasmid DNA

Plasmids are one of the indispensable common carriers in genetic engineering,
perfectly meeting a series of conditions required as a genetic engineering carrier
[7]. Plasmids are essentially a subcellular level genetic element, neither wrapped in
a protein shell nor having an independent life cycle outside the cell. It depends on
the host cell for replication and proliferation, stably inherited to the daughter cells
with the division of the host cell, but once it leaves the host cell environment, the
plasmid cannot survive independently. Plasmids have a certain compensatory effect
on the function of the host cell, and they achieve this by regulating various biological
processes. Plasmids have the ability to replicate and transcribe autonomously, which
is one of the key characteristics of them as gene carriers. They can ensure a constant
copy number in daughter cells, thereby stably transmitting and expressing the
genetic information they carry. In addition, the existence form of plasmids in cells is
flexible and diverse, they can either independently exist in the cytoplasm or integrate
into the bacterial chromosomal DNA, this flexibility provides great convenience for
genetic engineering operations [7].

Plasmids have been found to be widely present in various organisms, including
prokaryotic cells, some eukaryotic cells, Gram-positive and negative bacteria, and
specific microorganisms such as E. coli. As stable genetic elements outside the
chromosome, plasmids typically range in size from 1 to 200 kilobase pairs (kb),
presenting a double-stranded closed circular DNA structure. In terms of structural
complexity, plasmids are relatively simple, even more so than viruses. In E.
coli, a model organism, scientists have identified and classified various types of
plasmids, the most well-known of which include F plasmids, R plasmids, and
Col plasmids. F plasmids, also known as F factors or sex factors, have a unique
ability to carry genes from the host chromosome and transfer them to recipient cells
that originally did not contain the plasmid, achieving horizontal gene transfer. R
plasmids, known as resistance factors because they encode one or more antibiotic
resistance genes, not only endow bacteria with resistance to specific antibiotics but
can also transfer this resistance to recipient cells lacking the corresponding plasmid
under suitable conditions, enabling the latter to also acquire antibiotic resistance.
As for Col plasmids, they are a type of factor that produces colicins, the genes they
encode control the synthesis of colicins. Colicins are a type of protein with strong

3.1 DNA Molecules 57

Fig. 3.11 Schematic of
plasmid DNA

antibacterial activity, capable of killing bacterial strains that are closely related to
the E. coli producing the Col plasmid but do not carry the plasmid.

In the coding design of plasmid DNA, all plasmid DNA molecules suitable
for use as gene cloning vectors share three core components: Replicon structure,
Selective Marker, and Cloning Site. Specifically, the Replicon structure is the basis
for plasmid self-replication, which includes a key replication initiation site (Origin
of Replication, abbreviated as ori) responsible for initiating the DNA replication
process; it also contains regulatory genes to control the frequency and efficiency
of replication, and Replicon coding genes, which are crucial to the plasmid’s
replication mechanism. The Multiple Cloning Site (MCS) consists of a series
of single restriction enzyme cutting sites, providing precise insertion points for
exogenous DNA fragments, allowing researchers to insert target genes or DNA
sequences into specific locations on the plasmid as needed. Figure 3.11 visually
demonstrates the basic structure of a plasmid DNA molecule.

In the manipulation of plasmid DNA molecules, especially for the insertion
and deletion of exogenous nucleotide sequences, we mainly rely on Type II
restriction endonucleases. Type II restriction endonucleases are composed of a
single polypeptide chain and often exist in the form of homodimers in organisms. Its
unique properties include the following: First, it can recognize specific nucleotide
sequences on the double strands of DNA molecules and precisely cut the DNA at
these sequences, causing chain breaks; second, the positions of the two single-strand
breaks on the DNA molecule are not always directly opposite, which increases
the complexity and diversity of the enzyme cutting reaction; finally, the DNA
fragments produced by the cutting of Type II restriction endonucleases often have
complementary single-strand extensions at their ends, which facilitates subsequent
DNA connection and cloning operations.

The unique properties of plasmid DNA molecules, such as their flexibility and
stability in gene manipulation, lay a solid foundation for the implementation of DNA
computing. The plasmid DNA computing model cleverly utilizes the gene sites on
plasmid DNA molecules, and through the precise action of restriction endonucleases
and ligases, enables the plasmid to switch between two different states, which can
be symbolically represented by 0 and 1, thus simulating the function of a k bit data
register in traditional computers. This innovative concept forms the core principle of
plasmid DNA computing. Head and others first put this theory into practice in 2000,

58 3 Biological Computing: Data

constructing a computing model based on plasmid DNA molecules and successfully
applying it to solve the problem of the maximum independent set of vertices in
a graph. This pioneering work not only verified the feasibility of plasmid DNA
computing but also opened up new directions for subsequent research [8]. Since
then, research in this field has continued to deepen, and more research results on
plasmid DNA computing models and their applications have emerged [9, 10].

3.1.4 Characteristics of DNA Molecules

This section will introduce some properties of DNA molecules related to DNA
computing to the reader. These properties are fundamental in DNA computing
research and should be mastered by scholars in the field of DNA computing. The
content of this section is introduced for scholars who are not biology majors,
but this content is not sufficient. When conducting in-depth research on DNA
computing, it is necessary to further master the characteristics and latest results of
DNA molecules.

3.1.4.1 Denaturation and Renaturation of DNA Molecules

The denaturation of nucleic acids is a process involving the breaking of hydrogen
bonds between base pairs in the double helix region, which can be triggered by
physical or chemical factors, leading to the transformation of nucleic acids from
a double-stranded structure to a single-stranded form. The biological activity of
denatured nucleic acids may be partially or completely lost. It is important to
emphasize that nucleic acid denaturation only involves the breaking of hydrogen
bonds between bases, while the phosphodiester bonds that maintain the primary
structure of nucleic acids remain intact, so the primary structure of nucleic acids
remains stable during denaturation. Specifically, the hydrogen bonds in the double-
stranded DNA molecule (especially its iconic double helix structure) will break
when exposed to conditions such as elevated temperature, extreme changes in
medium pH (less than 4 or greater than 10), and the action of specific denaturants
(such as organic solvents methanol, ethanol, and chemical reagents such as urea,
formamide). When all hydrogen bonds are destroyed, the two polynucleotide chains
of the double-stranded DNA molecule will completely separate, a process known as
the denaturation or unzipping of the DNA molecule.

The denaturation process can usually be divided into two major categories: one
is triggered by a rise in temperature, known as thermal denaturation; the other is
caused by changes in the pH of the solution, known as acid-base denaturation. It is
worth noting that this biochemical transformation of denaturation actually occurs
within a relatively narrow temperature range and is accompanied by significant
changes in physical properties, the most critical of which is the change in absorbance
characteristics. Specifically, double-stranded DNA in its natural state exhibits lower

3.1 DNA Molecules 59

Fig. 3.12 Schematic diagram
of the relationship between
absorbance and temperature

Fig. 3.13 Denaturation and renaturation of DNA molecules

absorbance values compared to an equal amount of single-stranded DNA bases.
Therefore, we can indirectly reflect the denaturation process of DNA from double-
stranded to single-stranded by monitoring the increase in absorbance values, which
is intuitively demonstrated in Fig. 3.12.

Renaturation is the reverse process of denaturation, that is, for two completely
complementary single-stranded DNA molecules after denaturation, the process
of returning to a double-stranded, or even natural double helix structure under
appropriate conditions. Thermally denatured DNA molecules can generally be
renatured after cooling, so this process is sometimes also called annealing. The
schematic diagram of the denaturation and renaturation process of DNA molecules
is shown in Fig. 3.13. The renaturation temperature is generally 25 ◦

.C lower than
the melting temperature of the DNA molecule Tm . value (this concept is introduced
in the next section).

After renaturation, the DNA can recover some or all of its physical and chemical
properties and biological activity. During the renaturation process, a significant
phenomenon is the decrease in ultraviolet absorption value, which is called the
hypochromic effect. The efficiency of renaturation is affected by many factors,
mainly including the following aspects: First, the cooling rate during renaturation is

60 3 Biological Computing: Data

crucial and must be kept slow. This is because rapid cooling will hinder the effective
collision and binding between DNA molecules, preventing the renaturation process
from proceeding fully. Therefore, the process of slowly cooling DNA from high
temperature to an appropriate temperature is called annealing, which is beneficial to
DNA renaturation. Conversely, if DNA is rapidly cooled from high temperature to
low temperature (such as below 4 ◦

.C), it is called quenching, under which conditions
DNA is difficult to renature. Second, the concentration of DNA is also an important
factor affecting renaturation. The higher the concentration, the more opportunities
for complementary DNA fragments to collide in space, thereby increasing their
chances of binding into double strands, which is beneficial to the renaturation
process. Finally, the length of the DNA fragment also affects the difficulty of
renaturation. Longer DNA fragments, due to the complexity of their molecular
structure, reduce the chances of complementary bases meeting and binding, making
the renaturation process more difficult.

3.1.4.2 Melting Temperature

The melting temperature Tm ., is defined as the temperature at which 50% of the
base pairs in a double-stranded DNA molecule become single-stranded during
the denaturation process. It is another important parameter for evaluating the
thermodynamic stability of a DNA molecule. The Tm . value of a DNA molecule
is not only related to its concentration and the pH of the solution, but also to its
molecular size and the GC content of the bases it contains, and to the arrangement
of the base sequence. Because the melting temperature Tm .occupies a very important
position in DNA calculations, we introduce it here as a separate section.

One of the main biochemical operations in DNA calculations is the unzipping
problem of double-stranded DNA molecules. Since the DNA molecules generally
involved in biochemical reactions are massive, and it is required to unzip all the
required DNA molecules in a very short period of time, it is required that the DNA
molecules as data have as similar or close melting temperatures as possible Tm .. To
achieve this goal, first, we must require all double-stranded DNA molecules to have
the same number of hydrogen bonds when designing DNA sequences, because the
denaturation of double-stranded DNA molecules is actually the opening of hydrogen
bonds in the double strands; second, considering the impact of base stacking
forces, we should also consider the order of DNA sequences when designing
DNA sequences. Therefore, how to design DNA sequences to control the melting
temperature Tm . to keep the melting temperature of all DNA molecules used as data
as close as possible is a very important issue. Since Watson and Crick discovered the
double helix structure of DNA in 1953 based on Franklin’s crystal photos, research
on the melting temperature Tm . has been ongoing, and current high-throughput
sequencing technology also requires large-scale estimates of DNA molecules to
ensure sequencing stability and accuracy.

3.1 DNA Molecules 61

• Empirical formula of short DNA fragments: The calculation formula for the Tm .

value of oligonucleotide fragments generally less than 20 bp is

. Tm = 4(G + C) + 2(A + T)

where G + C . and A + T . are the corresponding base numbers of the DNA
molecule.

• Empirical formula based on GC content: In 1962, Marmur and Doty gave the
following approximate empirical formula for calculating Tm . value [11]: Tm =
69.3 + 0.41%(G + C)., where %(G + C). is the percentage content of GC bases
in the DNA molecule.

• Empirical formula based on DNA concentration: In 1987, Frank-Kamenetskiı̆
and others gave the following approximate empirical formula for calculating Tm .

value [12]

. Tm = 100.3 + 14.7log10C0

Where C0 . is the molar concentration of the DNA molecule.
• Calculation formula based on thermodynamic methods: In 1998, SantaLucia

summarized the thermodynamic calculation formula for the melting temperature
Tm . value [13]: Tm . = AH ◦(AS◦ +RlnCt)., where AH ◦

. and AS◦
. are the enthalpy

change and entropy change of the hybridization reaction, respectively, R is
the gas constant (1.987 cal/Kmol, Ct .) is the molar concentration of the DNA
molecule. Based on the thermodynamic parameters of neighboring base pairs,
this formula can quickly calculate the melting temperature of DNA molecules. In
recent years, this thermodynamic formula has been further improved and widely
used in large-scale sequencing technology [14].

3.1.4.3 Forces within DNA Molecules

As we have explained before, the key to the formation of stable double-stranded
DNA molecules lies in the hydrogen bond forces between bases, especially the
hydrogen bonds formed between A and T and between G and C. It is worth
noting that because there are three hydrogen bonds between G and C, their mutual
attraction is stronger than the two hydrogen bonds between A and T. Therefore,
when the length of double-stranded DNA molecules is the same, the GC content
directly determines the stability of the double strands: the higher the GC content,
the more stable the double strands; otherwise, the stability is worse. In addition,
there is another important force within the DNA molecule—the base stacking
force, which also plays an important role in the structural stability of DNA.
However, the existence of these two main forces also brings some challenges and
problems to DNA computation. First, single-stranded DNA molecules can easily
form hairpin-like conformations under specific temperature and environmental
conditions, which increases the difficulty of specific hybridization. Second, when

62 3 Biological Computing: Data

designing DNA molecule codes for information processing, we must consider the
complex constraints brought by these two forces, which involves at least two aspects
of problems, increasing the complexity and challenge of code design.

3.1.4.4 Replication of DNA Molecules

DNA molecules have a powerful ability to replicate, a process that is completed
under the catalysis of DNA polymerase, ensuring that a DNA molecule can be
accurately replicated into two structurally identical offspring DNA molecules.
During the replication process, the original DNA double strand first separates
into two single strands, which then each serve as a template, following the strict
base pairing principle (A pairs with T, G pairs with C), attracting and connecting
the corresponding free nucleotides, thus forming a new chain complementary
to the template chain. This replication mechanism ensures that both strands of
each DNA molecule can serve as templates for generating new complementary
chains. Ultimately, the result of replication is the production of two offspring DNA
molecules that are identical to the original DNA molecule in terms of genetic
information, as shown in Fig. 3.14.

3.1.5 DNA Biochemical Reactions

The means of information processing in DNA computation is the so-called “specific
hybridization” between DNA molecules. DNA computation is actually a series
of work carried out for the specific hybridization between DNA molecules, such
as coding design problems, solution space design problems, solution detection
problems, etc. Because of the key and important role of DNA molecules in DNA

Fig. 3.14 Schematic diagram
of DNA replication

3.1 DNA Molecules 63

Fig. 3.15 Types of DNA molecule hybridization

computation, we will specifically introduce the related concepts and basic properties
of DNA molecule hybridization in this section.

3.1.5.1 Complete Hybridization

Complete hybridization refers to the process where, following the Watson-Crick
base pairing principle, two DNA sequences under specific conditions can form
stable hydrogen bond connections between their completely complementary base
pairs, thus achieving precise molecular matching, as shown in Fig. 3.15a. The core
work of the DNA computation field is focused on how to achieve this kind of
specific complete hybridization, and on this basis, a series of in-depth research and
application explorations are carried out.

3.1.5.2 False Positive Hybridization

False positive hybridization refers to the phenomenon where, under suitable con-
ditions, non-specific binding can occur between DNA molecules that are not com-
pletely complementary, forming double-stranded molecules, as shown in Fig. 3.15b
and e. The root of this phenomenon lies in the “similarity” between the two DNA
molecule sequences involved in the hybridization, leading to unexpected pairing.
In DNA computation, false positive hybridization is usually a disadvantageous
situation that needs to be avoided as much as possible, because it may interfere with
the accuracy of the experimental results. However, this phenomenon is not uncom-
mon in the field of DNA computation and even in the broader field of molecular
biology. To effectively overcome the phenomenon of false positive hybridization,
the primary strategy is to take preventive measures at the stage of DNA sequence
coding design, by optimizing sequence design to reduce the possibility of non-
specific binding. Secondly, adjusting experimental conditions is also an important
means, such as changing the hybridization temperature, pH value or using specific

64 3 Biological Computing: Data

hybridization buffers, etc., to improve the specificity of the hybridization reaction.
By comprehensively applying these strategies, the occurrence of false positive
hybridization can be significantly reduced, improving the accuracy and reliability
of DNA computation.

3.1.5.3 False Negative Hybridization

False negative hybridization refers to the phenomenon where completely comple-
mentary DNA molecules do not fully hybridize during the reaction process for
various reasons, as shown in Fig. 3.15c. We also call this specific phenomenon
displacement hybridization. The main reason for the occurrence of false negative
phenomena is due to the reaction conditions and mistakes in the biochemical oper-
ation itself. Therefore, we need to operate carefully when conducting biochemical
experiments.

3.1.5.4 Hairpin Hybridization

Hairpin hybridization refers to a special phenomenon where a single DNA strand,
under specific conditions of its own base sequence, undergoes internal folding due
to hydrogen bond attraction, forming a local double-stranded structure, as shown in
Fig. 3.15d. This self-hybridization phenomenon is usually undesirable in most cases,
but through careful biochemical operation, we can effectively control and overcome
it. However, in some cases, hairpin hybridization can be cleverly used in DNA
computation to achieve specific information processing functions. For example,
in the DNA computation model for solving satisfiability problems described in
reference [15], hairpin DNA is used to mark non-solutions, and by introducing
enzyme cutting sites on the hairpin structure, non-solutions are removed from the
computation system. In addition, regarding the formation of hybrid double strands,
it is not only limited to DNA-DNA, but can also occur between RNA-DNA strands,
and even between PNA (peptide nucleic acid) and DNA. Given that current DNA
computation, RNA computation or PNA computation technologies have not widely
utilized these types of hybridization, this article will not discuss them in depth.

3.2 RNA Molecules

RNA molecules are similar in composition to DNA molecules, also possessing
four types of base information molecules (see Fig. 3.16). The nucleotide compo-
nents are polymerized by covalent bonds to form high molecular weight chains.
There are many types of RNA in living organisms, generally existing in single-
strand form, except for short double-strand RNA, virus double-strand RNA, and
cyclic under certain physiological conditions. Currently known molecular forms

3.2 RNA Molecules 65

Fig. 3.16 Molecular composition of RNA and DNA

Fig. 3.17 Ribose (left) and
Deoxyribose (right)

include messenger RNA (mRNA), transfer RNA (tRNA), ribosomal RNA (rRNA),
microRNA (miRNA), small interfering RNA (siRNA), short hairpin RNA (shRNA),
long non-coding RNA (lncRNA), etc., participating in gene transcription, protein
expression, developmental regulation, immune regulation, and other life activities.
Based on the characteristics of RNA information flow, various RNA calculation
and detection technologies are also booming, including genome editing technology
based on guide RNA (gRNA) for the development of new devices [16]. This section
mainly introduces the differences in the composition of RNA and DNA molecules,
the basic structure of RNA, the types of RNA molecules, and the RNA calculation
model. For details, see Chap. 11.

3.2.1 Nucleotides

The nucleotide of RNA is formed by the condensation of a molecule of phosphoric
acid, a molecule of pentose, and a molecule of organic base, in which the pentose is
ribose, while the pentose in DNA is 2-deoxyribose (see Fig. 3.17).

The organic bases in RNA are also divided into two types: purines and pyrim-
idines. The purines are the same as DNA, divided into adenine and guanine;
pyrimidines are divided into cytosine and uracil (uracil, U), without the thymine

66 3 Biological Computing: Data

Fig. 3.18 Uracil (left) and
Thymine (right)

Fig. 3.19 Uracil nucleoside
(left) and thymine
deoxynucleoside (right)

Fig. 3.20 5’-Uracil nucleotide (left) and 5’-thymine deoxynucleotide (right)

in DNA (Fig. 3.18). The character set of RNA as a coding information carrier is
AUGC, which is slightly different from the DNA character set ATGC.

Similar to DNA, the 1st C atom on the pentose molecule in RNA is connected to
the 9th N atom on the purine or the 1st N atom on the pyrimidine by a β . type C-N
glycosidic bond to form a nucleoside. There are also four types of ribonucleosides
in RNA: adenine nucleoside (adenosine), guanine nucleoside (guanosine), uracil
nucleoside (uridine), cytosine nucleoside (cytidine). Figure 3.19 shows the structural
differences between uracil nucleoside and thymine deoxynucleoside.

Like DNA, the site where the phosphate binds to the ribose in RNA is usually
the 3’ or 5’ carbon atom of the ribose. Corresponding to the four nucleosides, there
are also four nucleotides in the RNA molecule. Figure 3.20 shows the structural
differences between 5’-uracil nucleotide (5’-UMP) and 5’-thymine deoxynucleotide
(5’-dTMP). The pentose ring in the RNA nucleoside molecule is phosphorylated to
form a nucleotide.

3.2 RNA Molecules 67

3.2.2 RNA Molecular Structure

Each nucleotide in RNA contains a ribose (carbon numbered from 1’ to 5’), with
adenine (A), cytosine (C), guanine (G), or uracil (U) attached to the 1’ position of the
ribose. The ribose and phosphate polymerize into the backbone of the RNA chain
through phosphodiester bonds. An important structural difference between RNA
and DNA is the presence of a hydroxyl group at the 2’ position of the ribose. RNA
single strands can form local double strands, and the 2’ hydroxyl group makes the
RNA double-strand structure different from the DNA structure [17]. RNA molecules
are flexible in conformation, some regions do not participate in the formation of the
double helix structure, and are easily affected by the cutting effect of nucleases [18].

RNA only has four bases (adenine, cytosine, guanine, and uracil), but during
the process of RNA transcription and selective splicing, bases can be covalently
modified in various ways to form special nucleotides that participate in RNA
synthesis and play special physiological roles. The covalent bond between uracil
and ribose in pseudouridine (Ψ .) changes from a C-N bond to a C-C bond, and
methyluridine is prominent in the T Ψ . C loop of tRNA [19]. Hypoxanthine is also
a modified base, specifically a deaminated adenine base, its nucleoside is called
inosine, which plays a key role in the wobble hypothesis of the genetic code [20].
There are also more than 100 other naturally occurring modified nucleosides in
nature, among which the structural diversity of modifications in tRNA and rRNA
is the most frequent, but their specific physiological functions are not yet fully
understood.

Similar to DNA, single-stranded RNA molecules also have primary, secondary,
and tertiary structures. The primary structure is the condensation of nucleotide com-
ponents, obtained by the sequential arrangement of four nucleotides (Fig. 3.21a).
The secondary structure elements are the result of intramolecular hydrogen bonding,
such as hairpins, stem loops, and free single-strand regions (Fig. 3.21b). The tertiary
structure is further twisted and wound on the basis of the secondary structure,
forming a perfect functional domain. Like proteins, RNA in living organisms often
requires a specific tertiary structure to perform molecular functions.

Fig. 3.21 RNA sequence and
structure

68 3 Biological Computing: Data

3.2.3 Types of RNA Molecules

There are many types of RNA in living organisms. Based on the length of
the RNA chain, RNA can be simply divided into small RNA and long RNA
[21]. Small RNA is less than 200nt in length, while long RNA is longer than
200nt. Currently, long RNA mainly includes long non-coding RNA (lncRNA) and
mRNA, while small RNA mainly includes 5.8S ribosomal RNA (rRNA), 5S rRNA,
transfer RNA (tRNA), microRNA (miRNA), small interfering RNA (siRNA), small
nucleolar RNAs (snoRNAs), Piwi-interacting RNA (piRNA), tRNA-derived small
RNA (tsRNA), and small rDNA-derived RNA (srRNA).

Messenger RNA (mRNA) is a type of RNA that carries genetic information.
The information flow from the DNA coding region enters the ribosome, and the
messenger RNA can be considered a genetic copy of the DNA. According to
the biological rule that each three nucleotides (codon) corresponds to one amino
acid, the coding sequence of mRNA determines the amino acid sequence of the
corresponding protein. In eukaryotic cells, once precursor mRNA (pre-mRNA) is
transcribed from DNA, it is processed into mature mRNA. The mRNA then exits
the nucleus to the cytoplasm, where it binds with the ribosome and is translated into
the corresponding protein form with the help of tRNA. In prokaryotic cells without
a nucleus and cytoplasmic compartments, mRNA can bind with the ribosome during
transcription from DNA, and then degrade into its constituent nucleotides with the
help of intracellular ribonuclease.

Unlike mRNA, the most prominent examples of non-coding RNA are transfer
RNA (tRNA) and ribosomal RNA (rRNA), both of which are involved in the
translation process. tRNA (Transfer RNA) is a small RNA chain composed of about
80 nucleotides, which transfers specific amino acids to the growing polypeptide
chain at the protein synthesis ribosome site during the translation process. It has an
amino acid attachment site and an anticodon region for codon recognition, which
binds to a specific sequence on the messenger RNA chain through hydrogen bonds.
Ribosomal RNA (rRNA) is a component of the ribosome. Eukaryotic ribosomes
contain four different rRNA molecules: 18S, 5.8S, 28S, and 5S rRNA. Ribosomal
RNA and proteins combine to build the ribosome complex, which further binds
with mRNA to carry out intracellular protein synthesis. Compared with other
RNAs, rRNA is the most abundant in eukaryotic cells, corresponding to the basic
physiological function of protein translation.

In addition to protein regulatory factors such as inhibitors and activators, current
research shows that RNA also regulates genes. The RNA regulation mechanisms in
eukaryotes are diverse, such as RNAi inhibiting genes post-transcriptionally, long
non-coding RNA shutting down chromatin blocks epigenetically, and enhanced
RNA-induced gene expression increasing. Bacteria and archaea have also been
proven to use regulatory RNA systems, such as bacterial small RNA and CRISPR
[22]. microRNAs are RNA molecules that regulate mRNA translation through the
principle of complementary pairing. With the diversification of RNA regulatory

3.3 Protein Molecules 69

mechanisms, computational theorists can use the flow of genetic information to
build mathematical models of specific problems and construct nanoscale computers.

3.3 Protein Molecules

Proteins in nature are composed of 20 common amino acids linked sequentially
by covalent bonds, and further form secondary, tertiary, and quaternary structures
through non-covalent interactions such as hydrogen bonds, electrostatic interac-
tions, hydrophobic interactions, and van der Waals forces. These structures play
important roles in organisms and are crucial for signal perception. A single protein
sequence can form multiple conformations, and changes in protein conformation
can represent changes in signals, forming the basis for computational models.
Compared to nucleic acid molecules, protein molecules have diverse structures and a
wide range of functions. Detailed information on protein computation can be found
in Chap. 12. This section mainly introduces protein structure, classification, and
protein computation output detection technology.

3.3.1 Protein Structure

Amino acids are the basic units that make up proteins. They are organic acids with
amino groups. Their general structure is shown in Fig. 3.22. They consist of an
amino group, a carboxyl group, a hydrogen atom, and an R group (R group is
a variable group). Based on different R groups, there are 20 basic amino acids
that make up various proteins in organisms [21]. Protein molecules are covalent
polypeptide chains formed by the dehydration condensation of amino acids. Proteins
have primary, secondary, tertiary, and quaternary structures. The structure of a
protein molecule determines its function. This book uses hemoglobin as an example
to introduce the primary, secondary, tertiary, and quaternary structures of proteins.

The primary structure of a protein is the order of amino acid residues in the
protein polypeptide chain. Each protein has a unique and precise amino acid
sequence, which is determined by the order of genetic codes on the gene and is
the most basic structure of a protein. Hemoglobin is a metalloprotein that binds

Fig. 3.22 General structure
of amino acids

70 3 Biological Computing: Data

Fig. 3.23 Hemoglobin
structure

to oxygen with iron ions. It consists of two non-covalently bound α . and two β .

subunits, which are generally found in the red blood cells of vertebrates. Its main
function is to bind and transport oxygen in the blood. Figure 3.23a shows the
amino acid sequences of the α . and β . subunits of human hemoglobin, which consist
of 141 and 146 amino acid residues, respectively. The most authoritative protein
primary structure or protein sequence database internationally is UniProt (https://
www.uniprot.org/), which has collected more than 560,000 manually annotated
protein sequences. Protein molecules are not linearly extended, but fold and curl into
relatively stable spatial structures to perform their biological functions. The spatial
structure of a protein refers to its secondary, tertiary, and quaternary structures.

The secondary structure of a protein refers to a specific local spatial regular
conformation formed by a certain segment of the peptide chain backbone atoms
through hydrogen bonds along a certain axis, without involving the side chains
of amino acid residues. The secondary structure of proteins mainly includes α .-
helices, β .-sheets, and β .-turns. The polypeptide chain of the α .-helix spirals regularly
around the central axis, with every 3.6 amino acid residues spiraling up one turn,
moving up 0.54 nm. After the adjacent amino acid residues form a complete α .-helix,
the subsequent residues will form this helical structure more easily and quickly.
The α .-helix is the most common, typical, and abundant secondary structure in
proteins. About 35% of the amino acids in natural proteins are located in the α .-helix
structure. For example, 68% and 70% of the amino acids in the α . and β . subunits
of hemoglobin, respectively, are located in the α .-helix structure. Figure 3.23b is a
segment of the α .-helix of the β . subunit of hemoglobin. β .-sheets are also repetitive
structures, which can be roughly divided into parallel and antiparallel types. They
are maintained by hydrogen bonds between peptide chains or segments, and the
peptide bond plane folds into a sawtooth shape, with regular hydrogen bonds formed
between the N-H and C=O of the adjacent peptide chain backbone. The 180◦

. turn
structure that appears in the peptide chain is called a β .-turn, which is composed
of four consecutive amino acid residues. The second amino acid residue is often
proline, and the carbonyl of the first amino acid residue forms a hydrogen bond with
the amine of the fourth amino acid residue to maintain its stability. Irregular curls, in
addition to α .-helices, β .-sheets, and β .-turns, are often irregular secondary structures

https://www.uniprot.org/
https://www.uniprot.org/
https://www.uniprot.org/
https://www.uniprot.org/

3.3 Protein Molecules 71

that have important biological functions, but relatively irregularly arranged rings or
curl structures.

The tertiary structure of a protein refers to the specific spatial structure formed by
a polypeptide chain further winding and folding on the basis of various secondary
structures, maintained by secondary bonds. The stability of the tertiary structure of
proteins mainly depends on secondary bonds such as hydrogen bonds, hydrophobic
bonds, salt bonds, and van der Waals forces. These secondary bonds can exist
between the R groups of amino acid residues far apart in the primary structure of
proteins. In addition, disulfide bonds in most proteins also play a very important
role in the stability and formation of the tertiary structure. Figure 3.23c shows the
tertiary structure of the α . and β . subunits of hemoglobin.

Many biologically active proteins are composed of two or more polypeptide
chains with tertiary structures. Each polypeptide chain is called a subunit, and the
spatial relationship between subunits is maintained by non-covalent bonds, forming
the quaternary structure of the protein. The binding force between subunits is
mainly hydrophobic bonds, and hydrogen bonds and ionic bonds also participate
in maintaining the quaternary structure. For example, hemoglobin (Fig. 3.23d) is
composed of four polypeptide chains with tertiary structures, two of which are α .-
chains and the other two are β .-chains, and its quaternary structure is approximately
ellipsoidal.

3.3.2 Protein Classification

Proteins can be divided into globular proteins and fibrous proteins according to their
molecular shape. The former is approximately spherical in shape, soluble in water
and active, such as enzymes, transport proteins, protein hormones, antibodies, etc.
The latter is generally slender in shape, has a large molecular weight, and is mostly
structural proteins, such as collagen. Fibrous proteins can be divided into soluble
fibrous proteins and insoluble fibrous proteins. The former includes fibrinogen in
the blood, myosin in the muscles, etc., and the latter includes keratin and other
structural proteins.

According to the molecular composition, proteins can be divided into simple
proteins (pure proteins) and conjugated proteins. The former is composed entirely of
amino acids and does not contain non-protein components, such as serum albumin.
Simple proteins can be further divided into 7 types based on solubility: albumin,
globulin, histone, protamine, gluten, alcohol-soluble protein, and hard protein. The
globulin here is different from the globular protein mentioned earlier. It refers
to a pure protein that is insoluble or slightly soluble in water and soluble in
dilute salt solution. Immunoglobulin is one type of globulin. Conjugated proteins,
in addition to the peptide chains composed of amino acids, also contain non-
protein components, collectively referred to as prosthetic groups. According to the
different prosthetic groups, conjugated proteins can be divided into nucleoproteins,

72 3 Biological Computing: Data

lipoproteins, glycoproteins, phosphoproteins, heme proteins, flavin proteins, and
metalloproteins.

Proteins can also be classified according to their different functions in organisms,
and can be divided into enzymes, structural proteins, transport proteins, immune
proteins, recognition proteins, and other functional proteins. Enzymes are the most
common type of protein, they catalyze biochemical reactions, can accelerate the
speed of various chemical reactions, and are especially important for the metabolism
of organisms. Structural proteins mainly undertake the construction of internal and
external structures of cells. Transport proteins act as transport proteins, responsible
for transporting various substances inside and outside cells. Immune proteins can act
as secretions of immune cells, helping the body fight against pathogens. Recognition
proteins are special structures on the surface of cells, used for cell recognition. Other
functional proteins include some proteins that have not yet been clearly defined, and
they may play a variety of roles in organisms.

The above is a classification based on the role of proteins in organisms, but in
fact, each protein may be a combination of several of the above functions, because
the structure of proteins themselves is complex and diverse, and they can perform
multiple tasks under different physiological conditions [21].

3.3.3 Detection Technology

The output of protein calculation usually manifests as specific biochemical effects
or biological effects, and needs to be detected with the help of existing biological
analysis techniques. Optical technology plays a crucial role in the analysis of output
signals of protein calculation. The most commonly used optical technologies for
analyzing output signals of protein calculation include light absorption, fluorescence
spectroscopy, and surface plasmon resonance. The following introduces them
separately.

In the method of light absorption, the intensity of light will weaken after passing
through a solution or substance. The logarithm of the ratio of the incident light
intensity before and after passing through is called absorbance. By measuring
the change in the absorbance of the sample to light of a specific wavelength,
the composition and concentration of chemical substances in the sample can
be analyzed. In the research of protein calculation, the output signal of protein
calculation can be detected by measuring the change in the absorption intensity of
the produced or consumed substance to light of a specific wavelength.

Fluorescence spectroscopy is a phenomenon of photoluminescence. When a
molecule absorbs light of a specific wavelength, it enters an excited state. In this
state, the electronic structure within the molecule changes, causing some electrons
to transition to higher energy levels. When these electrons transition back to the
ground state, they release additional energy, resulting in the emission of visible
light. By measuring the fluorescence spectrum emitted by a sample after being
irradiated with excitation light, the chemical substances in the sample can be

References 73

detected. In protein computation research, the output signals of protein computation
can be analyzed by measuring the fluorescence spectrum of fluorescent substances
produced or consumed in the sample.

Surface plasmon resonance is a characterization technique based on optical
principles, often used to study the interactions of biomolecules and conformational
changes of membrane proteins. The sample to be tested is connected to the metal
surface, and polarized light or total reflection light is coupled to the metal surface.
When the angle or wavelength of the incident light matches the plasmon resonance
frequency on the metal surface, a resonance phenomenon occurs, causing changes
in light absorption or reflection. By measuring the plasmon resonance phenomenon
between the sample and the metal surface, the chemical substances in the sample
can be analyzed. In protein computation research, the sample can be combined with
the metal surface, and the output signals of protein computation can be analyzed by
measuring the plasmon resonance phenomenon between the sample and the metal
surface.

All of the above methods are based on optical principles, measuring the
absorption, emission, scattering, etc., of light by the sample to achieve qualitative
and quantitative analysis of the chemical substances in the sample [23]. In protein
computation research, these methods can help researchers monitor and analyze
the output signals of reactions in real time, thereby evaluating their computational
effects and performance.

References

1. Fang, G., Zhang, S., Dong, Y., et al.: A novel DNA computing model based on RecA-mediated
triple-stranded DNA structure. Progress in Natural Science. 17, 708–711 (2007)

2. Xu, J., Zhang, S.M., Fan, Y.K., Guo, Y.M.: Principles, progress and difficulties of DNA
computer (III). Journal of Computer Science. 30, 869–880 (2007)

3. Benenson, Y., Gil, B., Ben-Dor, U., et al.: An autonomous molecular computer for logical
control of gene expression. Nature. 429, 423–429 (2004)

4. Roweis, S., Winfree, E., Burgoyne, R., et al.: A Sticker-Based Model for DNA Computation.
Journal of Computational Biology. 4, 615–629 (1998)

5. Xu, J., Dong, Y.F., Wei, X.P.: Sticker DNA computer model (I): Theory. Chinese Science
Bulletin. 49, 1–8 (2004)

6. Xu, J., Li, S.P., Dong, Y.F., et al.: Sticker DNA computer model (II): Applications. Chinese
Science Bulletin. 49, 1–9 (2004)

7. Wu, N.H.: Principles of Genetic Engineering (Second Edition). Science Press, Beijing (2002)
8. Head, T., Rozenberg, G., Bladergroen, R.B., et al.: Computing with DNA by operating on

plasmids. BioSystems. 57, 87–93 (2000)
9. Zhang, L.Z, Liu, G.W., Xu, J.: Research on DNA computing model based on plasmid.

Computer Engineering and Applications. 4, 51–52 (2004)
10. Ouyang, Q., Kaplan, P., Liu, S.: DNA Solution of the Maximal Clique Problem. Science. 278,

446–449 (1997)
11. Marmur, J., Doty, P.: Determination of the base composition of deoxyribonucleic acid from its

thermal denaturation temperature. J. Mol. Biol. 5, 109–118 (1962)
12. Frank-Kamenetskiı̆, M., Anshelevich, V., Lukashin, A.: Polyelectrolyte model of DNA. Sov.

Phys. Usp. 30, 317–330 (1987)

74 3 Biological Computing: Data

13. SantaLucia Jr, J.: A unified view of polymer, dumbbell, and oligonucleotide DNA nearest-
neighbor thermodynamics. Proc. Natl. Acad. Sci. USA. 95, 1460–1465 (1998)

14. Chen Y, Huang X.: DNA Sequencing By Denaturation: Principle and Thermodynamic
Simulations. Anal Biochem. 384, 170–179 (2009)

15. Sakamoto, K., Gouzu, H., Komiya, K., et al.: Molecular computation by DNA hairpin
formation. Science. 288, 1223–1226 (2000)

16. Shipman, S., Nivala, J., Jeffrey, D., et al.: CRISPR—Cas encoding of a digital movie into the
genomes of a population of living bacteria. Nature. 547, 345–349 (2017)

17. Salazar, M., Fedoroff, O.Y., Miller, J.M., et al.: The DNA strand in DNA.RNA hybrid duplexes
is neither B-form nor A-form in solution. Biochemistry. 32, 4207–4215 (1993)

18. Mikkola, S., Stenman, E., Nurmi, K., et al.: The mechanism of the metal ion promoted cleavage
of RNA phosphodiester bonds involves a general acid catalysis by the metal aquo ion on the
departure of the leaving group. Journal of the Chemical Society, Perkin Transactions. 2, 1619–
1626 (1999)

19. Yu, Q., Morrow, C.: Identification of critical elements in the tRNA acceptor stem and T(Psi)C
loop necessary for human immunodeficiency virus type 1 infectivity. Journal of Virology. 75,
4902–4906 (2001)

20. Elliott, M., Trewyn, R.: Inosine biosynthesis in transfer RNA by an enzymatic insertion of
hypoxanthine. The Journal of Biological Chemistry. 259, 2407–2410 (1984)

21. Shen, T., Wang, J.Y.: Biochemistry (Third Edition). Higher Education Press, Beijing (2002)
22. Gottesman, S.: Micros for microbes: non-coding regulatory RNAs in bacteria. Trends in

Genetics. 21, 399–404 (2005)
23. Sambrook, J., Russell, D.: Molecular Cloning: A Laboratory Manual (Third Edition). Cold

Spring Harbor Laboratory, New York (2000)

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Chapter 4
Biological Computing Operators:
Enzymes and Biochemical Operations

The previous chapter introduced the data required for biological computing: DNA,
RNA, and proteins. They form the basis of biological computing. This chapter
presents another important foundation of biological computing—basic operators:
biological enzymes and biochemical operations.

4.1 Commonly Used Enzymes in Biological Computing

Biological computing is developing very rapidly, it has its own unique information
processing system, and the operations that execute these information processing
cannot be separated from the tool enzymes (essentially proteins) that mediate
biochemical reactions. These tool enzymes are introduced as follows, and the
specific use of enzymes will also be introduced in Sect. 4.2.

4.1.1 Restriction Endonucleases

Restriction endonucleases (also known as restriction enzymes) are important cutting
tools commonly used in biochemical reaction operations in biological computing.
These enzymes were first discovered in certain strains of E. coli, which can “restrict”
phage infection, hence the name. These enzymes can specifically recognize and
attach to specific nucleotide sequences, and cut the phosphodiester bond between
two deoxyribonucleotides at a specific location on each strand. This cutting reaction
usually occurs at a specific nucleotide sequence, which is a palindromic sequence. It
refers to a sequence where the base order read forward on one strand is exactly the
same as the order read backward on the other strand. According to the structure of
the restriction enzyme, the requirement of cofactors, the cutting site and the mode

© The Author(s) 2025
J. Xu, Biological Computing, https://doi.org/10.1007/978-981-96-3870-3_4

75

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-96-3870-3protect T1	extunderscore 4&domain=pdf
https://doi.org/10.1007/978-981-96-3870-3_4
https://doi.org/10.1007/978-981-96-3870-3_4
https://doi.org/10.1007/978-981-96-3870-3_4
https://doi.org/10.1007/978-981-96-3870-3_4
https://doi.org/10.1007/978-981-96-3870-3_4
https://doi.org/10.1007/978-981-96-3870-3_4
https://doi.org/10.1007/978-981-96-3870-3_4
https://doi.org/10.1007/978-981-96-3870-3_4
https://doi.org/10.1007/978-981-96-3870-3_4
https://doi.org/10.1007/978-981-96-3870-3_4
https://doi.org/10.1007/978-981-96-3870-3_4

76 4 Biological Computing Operators: Enzymes and Biochemical Operations

of action, restriction enzymes can be divided into three types, namely Type I, Type
II, and Type III.

1. Type I, which has both modification and restriction cutting functions; it also has
the ability to recognize specific base sequences on DNA, usually its cutting site
is thousands of bases away from the recognition site, and it cannot accurately
locate the cutting site, so it is not commonly used. For example: EcoB, EcoK.

2. Type II, which only has the function of restriction cutting, and the modification
function is performed by other enzymes. The recognized position is often a short
palindromic sequence; the cut base sequence is usually the recognized sequence.
It is a type of restriction enzyme with high practicality in genetic engineering.
For example: EcoRI, HindIII.

3. Type III, similar to Type I restriction enzymes, has both modification and
recognition cutting functions, recognizes short asymmetric sequences, and the
cutting site is 24–26 base pairs away from the recognition sequence, and it cannot
accurately locate the cutting site, so it is not commonly used. For example: EcoPI,
HinfIII.

The most commonly used in biochemical reaction operations in biological
computing is Type II restriction endonucleases, which are often used as “cutting”
operators. According to the cutting method, restriction enzymes can be divided into
staggered cuts and blunt cuts. Staggered cuts are generally cut at different parts of
the two strands, with a few nucleotides in between. After cutting, the two ends form
a palindromic single-strand end. This end can be connected with the DNA fragment
of the target gene with complementary bases, so it is called a sticky end. The other
is to cut at the same position of the specific sequence of the two strands to form a
blunt end.

The naming of restriction enzymes is determined by the type of bacteria, such
as EcoR as an example: E is the capitalized initial of Escherichia, representing the
genus of the discovered bacteria, co is the abbreviation of coli, representing the
species of the discovered bacteria, R is the capitalized initial of RY13 representing
its strain, I is the Roman numeral “one”, indicating the first restriction enzyme
discovered in this type of bacteria, representing the order of discovery. Other
common restriction enzymes and their recognition sequences [1] can be found in
the appendix of this chapter.

4.1.2 Polymerase

Polymerase (DNA Polymerase) is an enzyme involved in DNA replication and
synthesis. In 1957, American scientist Arthur Kornberg first discovered DNA
polymerase in E. coli, which is known as DNA polymerase I (DNA polymerase
I, abbreviated as: Pol I). In 1970, German scientist Rolf Knippers discovered DNA
polymerase II (Pol II). Subsequently, DNA polymerase III (Pol III) was discovered.
The main DNA polymerase in prokaryotes and responsible for chromosome repli-

4.1 Commonly Used Enzymes in Biological Computing 77

Fig. 4.1 DNA replication

cation is Pol III. It mainly catalyzes the polymerization of deoxyribonucleotides in
the form of a template. The polymerized molecules will form a template chain and
further participate in pairing. It plays a key role in biological computing systems and
is widely used in the polymerase chain reaction technology PCR (Polymerase Chain
Reaction) based on it, which we will discuss in detail in Sect. 4.4 of this chapter.

DNA polymerase uses deoxynucleotide triphosphates (dATP, dCTP, dGTP, or
dTTP, collectively referred to as dNTPs) as substrates, along the 3 ' . →.5 ' . direction
of the template, connects the corresponding deoxynucleotide to the 3'

. end of the
original DNA chain, extending the new chain in the 5 ' . →.3 ' . direction. The sequence
of the new chain is complementary to the sequence of the original template chain
and is consistent with the sequence of the original paired chain. All known DNA
polymerases synthesize DNA in the 5 ' . →.3 ' . direction and cannot “renew” (de novo)
synthesize DNA, but can only add deoxynucleotides to the 3'

. end of existing RNA
or DNA hydroxyl. Therefore, in addition to needing a template as a sequence
guide, DNA polymerase also needs a primer to initiate synthesis. The enzyme
that synthesizes the primer is called primase. DNA synthesis mediated by DNA
polymerase starts with the pairing of the primer and DNA. The paired primer has a
free hydroxyl at the 3'

. end. Subsequently, under the catalysis of DNA polymerase,
the paired electrons on the free hydroxyl oxygen attack the phosphorus atom on
the triphosphate base and nucleophilically replace it, thereby forming an ester
bond between the pentose and phosphate to complete the extension of a base.
During the entire process, the energy is provided by the high-energy phosphate
bond carried by the triphosphate base. After the formation of the phosphate ester, a
pyrophosphate molecule is released, and the pyrophosphate molecule splits again to
provide sufficient energy for the DNA polymerization process.

78 4 Biological Computing Operators: Enzymes and Biochemical Operations

Fig. 4.2 Nucleophilic substitution of DNA chain extension

The main types of DNA polymerase are:

1. In prokaryotes.

(a) DNA Polymerase I (Pol I): The DNA polymerase I of E. coli K-12 strain is
encoded by the polA gene, composed of 928 amino acids, with a molecular
weight of 103.1kDa, similar to a spherical structure, with a diameter of about
6.5 nm, and there are about 400 such polymerase molecules in each bacterial
cell. It was also the first polymerase attempted for PCR.

(b) DNA Polymerase II (Pol II): It plays a role in damage repair during DNA
stabilization.

(c) DNA Polymerase III (Pol III): It plays a major role in the DNA replication
process of E. coli.

(d) DNA Polymerase IV (Pol IV): Works with DNA Polymerase II for damage
repair during the stable period.

(e) DNA Polymerase V (Pol V): Participates in SOS repair.
(f) Family D DNA Polymerase.

2. In eukaryotes.

a. Pol α .: Forms a complex with DNA Primase (Pol α .-primase complex),
synthesizes about 10nt RNA primers, then extends this RNA primer as a

4.1 Commonly Used Enzymes in Biological Computing 79

DNA polymerase; after synthesizing about 20 bases (iDNA), it hands over
the subsequent extension process to Pol δ . and e ..

b. Pol β .: Plays a role in DNA repair, low fidelity replication.
c. Pol γ .: Replicates mitochondrial DNA.
d. Pol δ .: Pol δ . and Pol e . are the main DNA polymerases of eukaryotic cells.

Used for lagging strand synthesis.
e. Pol e .: Fills primer gaps, excision repair, recombination, used for leading

strand synthesis.
f. Pol ζ .: Participates in translesion DNA synthesis (TLS), especially in the

extension of primer DNA after bypassing DNA damage [2].

Another very important DNA polymerase is Taq DNA polymerase (Thermus
aquaticus). Because it is very important in biological computation, it is the basis
of PCR reaction, so it is listed separately and described in detail.

Kary Mullis began in 1983 to try to add DNA polymerase after hybridizing
two primers with the target DNA fragment, this method can achieve exponential
DNA replication. After each round of replication, the mixture needs to be heated
to above 90 ◦ .C to melt the newly synthesized DNA; the two DNA strands can only
become the template for the next round of replication after separation. Before the
discovery of Taq enzyme, the heating process would also inactivate the E. coli DNA
polymerase I used at the time. The application of Taq enzyme allows PCR to be
carried out at high temperatures (∼.60 ◦ .C), which helps to improve primer specificity
and reduce non-specific products. PCR only needs to be carried out on a relatively
simple thermal cycler in a closed test tube. Therefore, Taq enzyme is the cornerstone
of solving many problems related to DNA analysis in molecular biology, and it is
also the cornerstone of the initial biological computation.

Taq polymerase was isolated from thermophilic bacteria Thermus aquaticus by
Chien Chia-yun in 1976 [3]. Common abbreviations for Taq polymerase include
Taq Pol (or Taq enzyme). Thermus aquaticus lives in hot springs and deep-sea
hot springs. The Taq enzyme isolated from it can withstand the high temperatures
required for PCR [4]. Therefore, Taq enzyme replaced the original E. coli DNA
polymerase used in PCR [5]. The full length of the Taq enzyme gene is 2496
bases, with 832 amino acids, a molecular weight of 94 kDa, the optimal activity
temperature is 75–80 ◦ .C, the half-life is more than 2 hours at 92.5 ◦ .C, 40 minutes at
95 ◦ .C, and 9 minutes at 97.5 ◦ .C; Taq enzyme can replicate a DNA containing 1000
base pairs in 10 seconds at 72 ◦ .C [6].

One of the disadvantages of Taq enzyme is the lack of 3 ' . to 5 ' . exonuclease
proofreading activity, which results in low fidelity of Taq in replication. The original
error rate was 1 error per 9000 nucleotides [7].

In order to reduce the chance of errors, scientists have successively discovered
other polymerases that can replace Taq enzyme. For example, Pfu is a polymerase
with 3 ' . to 5 ' . exonuclease characteristics, and the error rate is about 1/26000000. But
compared to Taq polymerase, Pfu synthesizes DNA more slowly, so there are also
mixed use formulas being made.

80 4 Biological Computing Operators: Enzymes and Biochemical Operations

In addition to fast synthesis speed and high error rate, Taq polymerase will also
make the synthesized product “end with an A base”, TA cloning is to use this
characteristic of Taq polymerase, Taq’s PCR product will have an extra A at the
3 ' . end, at this time only a complementary T is displayed on the carrier, they can
approach each other, and connect by ligase. Through this method, the time for using
restriction enzymes to cut can be saved, and the PCR product and the carrier can be
quickly glued together directly using the characteristic of complementary ends.

Factors affecting the reaction activity of Taq enzyme:

(1) Temperature: Although Taq DNA polymerase has a strong temperature adapta-
tion range, an environment higher than 60 ◦ .C will still denature and inactivate
some enzymes. Conversely, if the temperature is lower than normal, enzyme
activity is restricted. Moreover, because the primer may bind to homologous
sequences in other parts of the genome at low temperatures (especially 25–
27 ◦ .C), some amplification products are not the target sequence. Appropriately
increasing the temperature, mismatched bases will dissociate, and the speci-
ficity of the reaction product will increase. The optimal temperature for Taq
DNA polymerase is about 70 ◦ .C;

(2) Magnesium Ion Concentration: The activity of Taq DNA polymerase is very
sensitive to the concentration of Mg 2+

.. Like many other polymerases, Taq
DNA polymerase is a Mg 2+

.-dependent enzyme. Using salmon sperm DNA as
a template, the total concentration of dNTPs is 0.9 ∼.0.8 mmol/L, and the PCR
system with different concentrations of MgCl 2 . is used to carry out the reaction
for 10 minutes. The results show that under the condition of 2.0 mmol/L MgCl 2 .,
the enzyme activity shows an increase. If the concentration of Mg 2+

. is too high,
the enzyme activity will be limited, and 10 mmol/L MgCl 2 . inhibits the enzyme
activity by about 50%. Since Mg 2+

. can bind with negative ions or negative
ion groups (such as phosphate groups), in PCR, DNA templates, primers, and
dNTPs are the main sources of phosphate groups, among which dNTPs occupy
a large proportion. Therefore, in the reaction system, the optimal concentration
of Mg 2+

. is also affected by the concentration of dNTPs. To obtain the best
reaction results, it is necessary to explore the reaction conditions. Whenever a
new target fragment and primer are used for the first time, or when a certain
parameter (dNTP or primer concentration) changes, the optimal concentration
of Mg 2+

. should be titrated. A general principle is that the final concentration of
Mg 2+

. in the sample should be at least 0.5 ∼.1.0 mmol/L higher than the total
concentration of dNTPs.

(3) KCl concentration: Generally it is 50 mmol/L, and when it is higher than
75 mmol/L, the PCR reaction is significantly limited. When the KCl concen-
tration reaches 200 mmol/L or more, the PCR reaction is significantly affected,
and there is still no nucleotide insertion after the reaction for 10 minutes. The
effects of NH4Cl,NH4Ac. and NaCl, all at a concentration of 50 mmol/L, on
the activity of Taq DNA polymerase are moderate inhibition, no effect, and
25 ∼.30% promotion, respectively.

4.1 Commonly Used Enzymes in Biological Computing 81

(4) dNTP concentration: Balanced low concentration dNTPs are more conducive
to the exertion of enzyme activity, can reduce mismatches, and obtain a large
amount of highly specific DNA reaction products. A 100 μ.l PCR system with
a nucleotide concentration of 40 μ.mol/L can produce 2.6 μ.g of DNA product,
consuming only half of the provided nucleotides.

(5) Denaturants: 10% ethanol does not inhibit enzyme activity; dimethyl sulfoxide
(DMSO), dimethyl formamide (DMF). Formamide has no effect on enzyme
activity at low concentrations, but as their concentrations increase, enzyme
activity decreases significantly. Ten percent DMSO can halve enzyme activity.
However, other researchers have observed that 10% DMSO plays a beneficial
role in some reaction systems. This diverse phenomenon is also observed in
experiments using urea. 1.0 mol/L urea can enhance enzyme activity, 2.0 mol/L
urea can preserve most enzyme activity. However, there are also reports that
0.5 mol/L urea completely inhibits PCR. In summary, the impact parameters
of denaturants on Taq DNA polymerase and the PCR system need more
experimental data. Taq DNA polymerase is very sensitive to sodium dodecyl
sulfate (SDS), and some non-ionic detergents can completely eliminate the
inhibitory effect of low concentration SDS on enzyme activity. For example,
0.5% Twen20 and 0.5% NP40 can offset the effect of 0.01% SDS on enzyme
activity.

Section 4.4 of this chapter will discuss in detail the polymerase chain reaction
technology (Polymerase Chain Reaction, PCR) based on Taq DNA polymerase.

4.1.3 Ligase

DNA ligase, also known as DNA adhesive enzyme, plays a special and key role in
biological computing, that is, to glue two DNAs into one, performing corresponding
operations. Whether it is the adhesion of double-stranded or single-stranded DNA,
DNA ligase can connect the tail end of the 3 ' . end of DNA with the front end of the
5 ' . end by forming a phosphodiester bond. Although there are other proteins in the
cell, such as DNA polymerase, which can glue DNA by forming a phosphodiester
bond through the polymerization reaction process when one strand of DNA is used
as a template, the adhesion process of DNA polymerase is just an incidental function
of the polymerization reaction. The real work of DNA adhesion in cells is mainly
done by DNA ligase. In biological computing, this enzyme is mainly used for the
generation of solution space and the recombination of solutions.

As the name suggests, the function of DNA ligase is to bond broken DNA, and
only the reactions of DNA replication and DNA repair in cells involve the synthesis
of broken DNA. Therefore, DNA ligase plays an important role in the above two
mechanisms. In addition to the bonding reactions in cells, with the progress of
molecular biology, almost most molecular biology laboratories will use DNA ligase

82 4 Biological Computing Operators: Enzymes and Biochemical Operations

Fig. 4.3 Schematic diagram of DNA ligation process completed by ligase acting on sticky ends

to carry out recombinant DNA experiments, which may also be classified as another
important function of it.

The chemical reaction process of DNA ligase, taking T4 ligase as an example,
first, one end of the DNA 3 ' . end needs to be modified into a hydroxyl group
(OH-), and the other 5 ' . end must carry a phosphate. The covalent bond of the
phosphodiester bond is promoted by the action of DNA ligase, and the nucleotide
sequence is paired in a guanine-cytosine corresponding manner to complete the
reaction. DNA ligase can also handle blunt ends, that is, even if there is no guanine-
cytosine paired base pair, the above reaction can still be carried out.

In prokaryotic cells and most other cells, T4 DNA ligase is the main one. In
mammalian cells, at least four ligases have been found and named:

Type I Ligase It is the main DNA ligase, which connects Okazaki fragments
produced during DNA replication, and relies on the function of Type I ligase in
DNA recombination and repair.

Type II Ligase Type II ligase was initially purified from calf thymus and fetal calf
liver, but it was later confirmed to be just a fragment cut by protease from Type III.

Type III Ligase Type III ligase forms a complex with XRCC1 protein, mainly
acting on the bonding reaction of base excision repair.

Type IV Ligase Type IV ligase forms a complex with XRCC4 protein; both Type
III and Type IV participate in the bonding process of DNA repair, and together
participate in the last reaction of non-homologous end joining.

4.1 Commonly Used Enzymes in Biological Computing 83

4.1.4 Modification Enzymes

The DNA modification enzymes commonly used in biological computation mainly
include alkaline phosphatase, DNA methyltransferase, and T4 polynucleotide
kinase.

Alkaline phosphatase (Alkaline phosphatase, ALP or ALKP) is a type of hydro-
lase that can remove phosphate groups from nucleotides, proteins, and alkaloids
to perform dephosphorylation. It is most effective in an alkaline environment,
hence the name alkaline phosphatase [8]. The most common application of alkaline
phosphatase in the laboratory is to remove the phosphate group at the 5 ' . end of DNA
to prevent the vector from self-circularization and to remove the phosphate group
before radiolabeling the 5 ' . end of DNA [9].

DNA methyltransferases mainly function to methylate certain sites of DNA
molecules (such as restriction enzyme recognition sequences) to protect them from
being cut by restriction enzymes. In mammals, there are mainly two types of DNA
methyltransferases: DNA methylation maintenance enzyme Dnmt1 and de novo
DNA methyltransferases Dnmt3a, Dnmt3b, and Dnmt3L.

T4 polynucleotide kinase (Kinase) mainly catalyzes the transfer of γ .-Pi of ATP
to the 5 ' .-OH of DNA or RNA, making it phosphorylated. It is commonly used in
biological computation to radiolabel the 5 ' .end of DNA chains, i.e., to perform probe
labeling.

4.1.5 Nucleases

Nucleases (nuclease) are enzymes that can cut the phosphodiester bonds between
nucleic acids and nucleotides. Nucleases have different effects on the single-strand
and double-strand breaks of their target molecules. Commonly used nucleases
in biochemical operations include nuclease Bal 31, exonuclease III, and single-
strand nuclease S1. In biological computation, this enzyme is mainly used for the
elimination of non-solutions.

Nuclease Bal 3 is an enzyme produced outside the cell body of the marine
bacterium A. espejiana Bal 31. It cuts from both 3 ' . and 5 ' . ends of double-stranded
DNA. The enzyme starts to hydrolyze the two strands simultaneously, and the
hydrolysis speeds of the two strands may not be equal. The result of the reaction
is that the double strand shortens from both ends, but mostly leaves a single-
strand end. The complete hydrolysis product is 5 ' .-mononucleotide. This enzyme
has highly specific single-strand deoxyribonucleic acid endonuclease activity, and
can also degrade double-strand circular DNA in the single-strand area that appears
momentarily in the gap or super helical curl, or gradually unravel the double-strand
linear DNA at the 3 ' . or 5 ' . end. It is mainly used for deletion mutation cloning
experiments of different lengths and nucleic acid structure and function analysis.

84 4 Biological Computing Operators: Enzymes and Biochemical Operations

Exonuclease III is a 3 ' . end exonuclease, and the reaction requires Mg 2+
.. It has

3 ' . end phosphatase, endonuclease, and RNase H activity. It is commonly used to
prepare specific probes and templates for DNA polymerase. This characteristic also
makes it used in biocomputing to prepare specific probes for solution extraction.

Single-strand nuclease S1 is a single-strand (ssDNA, ssRNA) specific nuclease,
producing mononucleotides or oligonucleotides with a 5 ' . end phosphate. It works
at low pH values (pH 4–4.5) and requires Zn 2+

.. It is used to cut off the hairpin
structure of DNA molecules, remove the sticky ends of DNA, and form flat ends. In
biology, it is mainly used to analyze RNA-DNA hybrid structures, that is, to analyze
introns. In biocomputing, it is used to eliminate non-solutions.

4.2 Biochemical Operations in Biocomputing

Biocomputing is accomplished by performing certain specific biochemical opera-
tions on biomacromolecules, mainly DNA molecules, including regulating external
conditions such as temperature and pH in biochemical reactions, and artificially
cutting, splicing, combining, and separating DNA molecules.

4.2.1 Synthesis of DNA Molecules

Currently, the chemical synthesis of DNA molecule fragments generally uses the
solid-phase phosphoramidite method. The organic chemical principle is to use the
nucleotide bound to the solid-phase carrier CPG (Controlled Pore Glass) as the
first nucleotide at the 3 ' . end and another protected deoxynucleotide to undergo
condensation reaction under the catalysis of DNA polymerase. After the 5 ' . end
protecting group dimethylaminotriphenylmethyl (DMT) is oxidized and removed,
it is condensed with the third protected deoxynucleotide. This cycle achieves the
purpose of synthesizing DNA molecule fragments. After the condensation synthesis
is completed, the protecting group on the DNA fragment is removed by the ammonia
solution method. Currently, in DNA computing, a method called Mix-and-Split
combinatorial synthesis is widely used to synthesize a large number of DNA
molecule collections to represent the solution space [10]. Usually, this method uses
magnetic beads as a support for DNA synthesis. It is estimated that for a magnetic
bead with a diameter of 20 μ.m, about 6.02–10 11

. DNA molecules can be fixed, and
the number of such magnetic beads in 1 gram is about 2.4–10 8 .. The synthesis starts
from the 3 ' . end of the DNA molecule. Because the support itself is magnetic, it
can be separated from the DNA molecules not on the magnetic beads in the solution
through a magnetic field. The main synthesis steps are as follows: first, the magnetic
beads in the U-shaped container are evenly distributed to two synthesis devices;
then, the corresponding DNA sequences are synthesized in these two devices at the

4.2 Biochemical Operations in Biocomputing 85

Fig. 4.4 Schematic diagram
of the Mix-and-Split
combinatorial synthesis
method

same time; finally, the magnetic beads in these two synthesis devices are merged into
the U-shaped container, and this method is repeated until all the combinatorial DNA
molecules are synthesized. Figure 4.4 shows a schematic diagram of synthesizing
2 3 . combinatorial DNA molecules, so this method can synthesize a large number of
exponential combinatorial DNA molecules in linear time [10].

4.2.2 Cutting, Connecting, and Pasting of DNA Molecules

Operations on DNA sequences require the catalysis of the above-mentioned tool
enzymes. In DNA computing, the main operations performed on DNA molecules
are cutting, connecting, and pasting to complete the corresponding calculations. The
commonly used ones are three enzymes: restriction endonucleases, DNA ligase,
exonuclease.

86 4 Biological Computing Operators: Enzymes and Biochemical Operations

The previous section introduced the tool enzymes used in biochemical opera-
tions, and the following will specifically introduce the common biological opera-
tions involved in DNA computing [11–13].

Restriction endonucleases are the scalpels of molecular biology. They are a type
of DNA hydrolase that recognizes a specific position (i.e., recognition site) in a
specific nucleotide sequence in double-stranded DNA, and cuts the DNA chain by
hydrolyzing the 3 ' . →.5 ' . phosphodiester bond, producing 5 ' .-phosphate and 3 ' .-OH
terminal.

The recognition sequence length of restriction endonucleases is generally 4 to 6
nucleotides and most have a dyad symmetry structure, also known as a palindromic
sequence. A few enzymes can also recognize longer nucleotide sequences. Restric-
tion enzymes not only have specific recognition sequences, but any one enzyme cuts
During the DNA chain, the 3 ' .phosphate ester bond of the 3 ' . and 5 ' .diphosphate ester
bond of the nucleotide is always hydrolyzed, so that the 5 ' . end of the product carries
a phosphate monoester group, and the 3 ' . end is a free hydroxyl group. Therefore,
the ends of all products of a certain enzyme have the same structure. During the
calculation process, the enzyme recognizes specific sequences and performs cutting,
completing one step of the calculation process.

Based on the structural characteristics of the cutting point sequence, the ends
of the products can be divided into sticky ends (Sticky End) and blunt ends (Blunt
End). Sticky ends refer to the single-strand structure of 1 to 4 nucleotide residues
at the end of the DNA fragment after enzyme cutting, and the protruding single
strands at both ends of the fragment are complementary. The protruding single
strands can be divided into 5 ' . and 3 ' . sticky ends due to different positions. The
protruding single strand with a 5 ' . phosphate monoester is called a 5 ' . sticky end, and
the protruding single strand containing a 3 ' . hydroxyl group is called a 3 ' . sticky end.
Blunt ends refer to the structure of the fragment after enzyme cutting. In DNA in
vitro recombination, sticky ends are effective substrates for DNA ligase, with high
connection efficiency.

Exonucleases are a type of enzyme that can continuously cut off nucleotides
from the ends of linear deoxyribonucleic acid. Some exonucleases can remove
nucleotides from the 5 ' . hydroxyl end, while others can remove nucleotides from
the 3 ' . hydroxyl end. Some exonucleases can remove nucleotides from both the 5 ' .
hydroxyl end and the 3 ' . hydroxyl end, such as DNA polymerase I. At the same
time, some exonucleases, such as E. coli exonuclease I (Eco I) and exonuclease
VII (Eco VII), are specifically targeted at single-strand molecules, while others are
specifically targeted at double-strand molecules such as E. coli exonuclease III (Eco
III), and some can degrade both single and double strands. Because exonucleases
shorten DNA molecules by removing some nucleotides from the end of the DNA
molecule each time, and can degrade the entire DNA molecule, we call it destruction
(Destroy). Figure 4.5 is a schematic diagram of exonuclease, in which E. coli
exonuclease III is a 3 ' . →.5 ' . nuclease (degrading 3 ' . →.5 ' . oriented chains), and a
5 ' . protruding molecule is obtained by the action of exonuclease III. And Bal31,
removes nucleotides from both strands of the double-strand molecule. In fact,
many polymerases also have exonuclease behavior, which is very critical in the

4.2 Biochemical Operations in Biocomputing 87

Fig. 4.5 Schematic diagram of exonuclease cutting

error correction in the DNA replication process (executed by polymerase). But
polymerases are always 5 ' . →.3 ' . oriented, and the associated exonucleases can be
either 5 ' . →.3 ' . oriented or 3 ' . →.5 ' . oriented. During the calculation process, select
specific exonucleases to eliminate the destruction of some sequences, selectively
eliminate some non-solutions, and prepare for the next step.

DNA ligases are enzymes that seal gaps in the DNA chain. They catalyze the
formation of a diphosphate bond between the 5 ' .-PO 4 . of the DNA chain and the 3 ' .-
OH of another DNA chain with the energy provided by the hydrolysis of ATP or
NAD. However, these two chains must be paired with the same complementary
chain (except for T4 DNA ligase), and they must be two adjacent DNA chains
to be catalyzed by DNA ligase into a diphosphate bond. This form of connection
process is very necessary for normal DNA replication, repair of damaged DNA,
and splicing of DNA chains in genetic recombination. The most commonly used
T4 DNA ligase (T4 DNA ligase) catalyzes the formation of a diphosphate bond
between the adjacent 3 ' .-OH and 5 ' . phosphate group in double-stranded DNA. It
can be used to connect two DNA fragments with sticky ends, or to connect two
blunt-ended DNA fragments, making them a recombinant DNA molecule. It should
be noted that DNA ligase cannot connect two single-stranded DNA molecules or
circular DNA single-stranded molecules. The connected DNA chain must be part of
a double helix DNA molecule. In DNA computation, this enzyme is mainly used for
the generation of solution space and the recombination of solutions.

88 4 Biological Computing Operators: Enzymes and Biochemical Operations

4.2.3 DNA Recombination Technology

DNA recombination (DNA recombination) or molecular cloning is a process of
forming a recombinant DNA molecule through a vector molecule (such as plasmid,
bacteriophage, virus, etc.) with replication capability, introducing it into a recipient
cell that does not have this recombinant molecule, and performing persistent and
stable replication and expression, so that the recipient cell produces exogenous DNA
or its protein molecule. There are four commonly used vectors, namely plasmids,
bacteriophages, cosmid, and retroviruses. These vectors have characteristics such as
small molecular weight, multiple enzyme cutting sites, various selective markers,
stable existence in cells and independent replication and amplification capabilities.
Among them, plasmid vectors were first used in DNA computation.

Plasmids are extrachromosomal molecules that can replicate independently and
stably inherit a type of circular double-stranded DNA molecule (Covalently Closed
Circular DNA, cccDNA). In the encoding of plasmid DNA, all plasmid DNA
molecules suitable for use as gene cloning vectors must contain the following
three common components: replicon structure, selective markers, and cloning sites.
The replicon structure includes a replication origin (Origin, abbreviated as ori),
regulatory genes controlling the replication frequency, and some replicon-encoded
genes. The multiple cloning sites (Multiple Cloning Sites) of the plasmid and its
circular structure can form a special data structure, which can be used for DNA
computation. Plasmid-based DNA computation was first proposed by Head [14]
and others, which fully utilizes the operation methods and tool enzymes of genetic
engineering to solve problems. The methods for plasmid DNA recombination
mainly include sticky end connection and blunt end connection. The adoption of
these methods mainly depends on the nature of the ends of the exogenous DNA
fragments and the nature of the restriction enzyme cutting sites on the plasmid vector
and exogenous DNA.

4.2.4 Denaturation and Hybridization

Denaturation (Melting/Denaturation) and hybridization (Annealing/Hybridization)
are two of the most basic operations in DNA computation, and almost all com-
putation models use this operation, which also runs through other operations.
Usually, heat denaturation is used, that is, when heated to a certain temperature
(85 ◦ .C ∼.95 ◦ .C), the hydrogen bonds of the DNA double helix break, forming a
single strand; the hybridization process is the opposite, when the temperature drops
to a certain degree, two complementary single strands will hybridize to form a
double strand, so the hybridization process is also called the renaturation process.

4.2 Biochemical Operations in Biocomputing 89

4.2.5 Amplification of DNA Molecules

In DNA computation, it is often necessary to amplify specific DNA molecules or
calculation results in order to detect the calculation results. The Polymerase Chain
Reaction (PCR) technology, designed by Kary Mullis in 1985, is a rapid method for
in vitro enzyme-promoted amplification of specific DNA fragments. The principle
of PCR technology mainly depends on the characteristics of the DNA template,
using DNA polymerase; the function of DNA polymerase is the replication and
promotion of DNA synthesis; mimicking the replication process in the body in vitro,
inducing polymerase reaction between the additional pair of primers. The whole
process of PCR is composed of DNA template denaturation, template and primer
renaturation, and primer extension, specifically described as follows:

1. Denaturation, first all target DNA double strands that need to be amplified are
heat denatured into two oligonucleotide single strands;

2. Annealing, then a pair of oligonucleotide fragments complementary to the
sequences near the two ends of the DNA to be amplified, synthesized artificially
according to the known DNA sequence, are added as primers, i.e., left and right
primers. When the temperature suddenly drops, the template DNA and the primer
bind complementarily according to the base pairing principle to form a hybrid
chain locally, and the chance of complementarity between the template DNA
double strands is less;

3. Extension, under the action of Taq DNA polymerase, using 4 types of deoxyri-
bonucleotide triphosphates (dNTP) as raw materials, in the presence of mag-
nesium ions, the primer is extended in the 5 ' . to 3 ' . direction, automatically
synthesizing new DNA chains, making DNA replicate into double strands again.
Then the second cycle of amplification begins.

The above three steps are a cycle, the primer not only plays a guiding role in
the reaction, but also plays a role in specifically limiting the range of amplified
DNA fragments. The newly synthesized DNA chain contains the complementary
sequence of the primer and can serve as a template for the next round of polymerase
reaction. This repetition causes the target DNA fragment to be amplified exponen-
tially. Because PCR technology is particularly important in biological computation,
we will discuss it in detail in a separate section (Sect. 4.4 of this chapter).

4.2.6 Separation and Extraction of DNA Molecules

4.2.6.1 Gel Electrophoresis Technology

In DNA computation, the separation of DNA molecules of specific lengths is mainly
achieved through gel electrophoresis. This method is simple and fast, and can
separate fragments that other methods cannot separate. After directly embedding
low-concentration fluorescent dyes, the location of the DNA fragments can be

90 4 Biological Computing Operators: Enzymes and Biochemical Operations

directly detected under ultraviolet light. If necessary, DNA fragments can also be
recovered from the gel for various cloning operations. In addition, combined with
other methods such as PCR technology, the sequence of DNA can be analyzed.

Electrophoresis refers to the migration process of charged particles under the
action of an electric field, and is the main method for separating, identifying, and
purifying DNA fragments. DNA molecules are a type of strong polar molecule, with
an isoelectric point of pH 2 ∼.2.5. The principle of gel electrophoresis to separate
DNA molecules is: DNA molecules have charge effects and molecular sieve effects
in the gel. DNA molecules carry a negative charge in a solution above the isoelectric
point and move towards the positive pole in an electric field. Under a certain electric
field strength, the migration speed of DNA molecules depends on the molecular
sieve effect. DNA fragments with different relative molecular masses have different
electrophoretic speeds, thus achieving separation. Gel electrophoresis can not only
separate DNA of different molecular weights, but also separate DNA molecules of
the same relative molecular weight but different conformations.

The electrophoresis process must be carried out in a supporting medium.
Currently, the two commonly used supporting materials in biological operations
are agarose and polyacrylamide, respectively known as agarose gel (Agarose
Gel) electrophoresis and polyacrylamide gel (Polyacrylamide Gel) electrophoresis.
Agarose is purified from agar, mainly a linear polysaccharide composed of D-
galactose and 3,6-anhydro-L-galactose, usually used at a concentration of 1% to
3%. After heating to boiling until the solution becomes clear, it is injected into the
mold and cooled at room temperature to form agarose gel. The agarose forms a
relatively stable cross-linked structure through intra- and intermolecular hydrogen
bonds. This cross-linked structure gives agarose gel good anti-convection proper-
ties. Polyacrylamide gel is a gel polymerized from monomeric acrylamide (CH 2 .

=CHCONH 2 .Acrylamide) and methylenebisacrylamide (CH 2 .(NHCOHC=CH 2 .) 2 . N,
N ' .-methylenebisacrylamide) under the action of free radical catalysts. These two
media can be made into gels of various sizes, shapes, and pore sizes, and elec-
trophoresis can be performed on different devices. When DNA molecules pass
through the sieve holes formed by the gel, short DNA molecules move faster than
long ones, so they can be easily distinguished. Agarose has a lower resolution
than polyacrylamide, but its separation range is wide, about 200 bp ∼.50 kb of
DNA molecules. Agarose gel electrophoresis is usually performed on a horizontal
device. Polyacrylamide separates small fragments (5 bp ∼.500 bp) effectively, and
can even distinguish DNA fragments differing by 1 bp. DNA fragments larger than
10000 kb can be separated by pulsed field gel electrophoresis where the direction
of the electric field changes periodically. Electrophoresis technology is used in bio-
computing to separate and extract solution spaces, so it is also very important, and
we will discuss it in detail in a separate section (Sect. 4.3 of this chapter).

4.2 Biochemical Operations in Biocomputing 91

4.2.6.2 DNA Molecule Extraction Technology

The acquisition of known sequence DNA molecules can be achieved through affinity
purification. For example, suppose you want to obtain a single-strand molecule
chain α . from a solution S. First, synthesize α . (α . is the complementary molecule
or a fragment of α ., called a probe), and stick α . on a filter, then, use this filter to
filter the S solution, α . binds with α . and stays on the filter, while other molecules
are filtered out. In this way, you can get the double-strand molecules (α . and α .)
attached to the filter. Finally, put the filter into a container, decompose the double-
strand molecules, remove the filter, and you can get the target molecules left in the
container. Alternatively, the probe can be attached to tiny magnetic beads, put them
into the solution S containing the target molecules, shake the mixed liquid, and the
target molecules will attach to the magnetic beads (as shown in Fig. 4.6).

4.2.7 Detection and Reading of DNA Molecules

After the DNA computation is finished, it is usually necessary to detect whether
there are solutions that meet the conditions (Detecting and Reading). The following
molecular biology techniques are generally used.

4.2.7.1 DNA Molecule Hybridization

Molecular hybridization (simply called hybridization, hybridization) is one of
the most basic experimental techniques in DNA computation research. Its basic
principle is to use the denaturation and renaturation properties of DNA molecules to
form heteroduplex double-strand molecules according to the base complementarity

Fig. 4.6 Schematic diagram of extracting specific DNA molecules by magnetic bead method

92 4 Biological Computing Operators: Enzymes and Biochemical Operations

relationship between DNA fragments from different sources. Heteroduplex double
strands can form between DNA and DNA chains, RNA and DNA chains, and
PNA and DNA. The essence of hybridization is to realize the renaturation of
complementary nucleic acid chains under certain conditions.

Southern hybridization is a method for analyzing specific DNA sequences in
vitro. During operation, nuclear DNA or mitochondrial DNA is first cut into
DNA fragments with restriction endonucleases, separated by gel electrophoresis,
transferred to an acetate fiber film or nylon membrane, and then hybridized with a
labeled probe. Through autoradiography, it can be identified whether the special
nucleotide sequence complementary to the probe exists. In DNA computation,
the labeled DNA probe can also be transferred to an acetate fiber film or nylon
membrane, and then hybridized with all solutions in DNA computation. After
autoradiography, whether there is a solution that meets the conditions can be known
by whether there is a trace.

4.2.7.2 DNA Sequence Determination

Sometimes DNA computation also needs to perform sequence analysis on DNA
chains, including sequencing DNA sequences. The classic DNA sequencing method
mainly uses Sanger’s dideoxy chain termination method. The principle is to add four
different dideoxynucleotides (formed by removing the oxygen atom on the hydroxyl
group at the 3 ' . end of the deoxyribonucleotide) in the extension reaction catalyzed
by DNA polymerase. Because they do not have a 3 ' . end hydroxyl group, they
cannot form a phosphodiester bond with the subsequent four nucleotides, thereby
terminating the extension of the DNA sequence. Because every base on the DNA
chain has an equal chance of appearing at the variable termination end, each of
the above groups of products is a mixture of oligonucleotides, the length of which
is determined by the position of a specific base on the original DNA fragment.
Then, under conditions that can distinguish different DNA molecules with a length
difference of only one nucleotide, each group of oligonucleotides is subjected to
electrophoresis analysis. As long as several groups of oligonucleotides are added
to several adjacent lanes above the sequencing gel, the nucleotide sequence on the
DNA can be directly read from the autoradiograph of the gel. A more advanced
sequencing method is based on Sanger’s dideoxy chain termination method, using
fluorescently labeled primers (A, T, G, C corresponding to different fluorescent
dyes) to amplify the template to be tested, and using capillary electrophoresis
and excitation light detection to read the DNA sequence. Due to its high degree
of automation and short time consumption, this method is adopted by many
commercial sequencers.

4.2 Biochemical Operations in Biocomputing 93

4.2.8 Other Biochemical Operation Techniques for Biological
Computation

4.2.8.1 Biochip Technology

The DNA chip was first proposed by S.P.A. Forder [15] and successfully developed
in 1996 [16]. The subsequent biochip technology has become one of the most
profound technological advancements since the mid-1990s, integrating microelec-
tronics, biology, physics, chemistry, and computer science. It has significant basic
research value and a clear industrialization prospect. At this stage, biochips have
gradually developed from theoretical research to the initial application stage,
and their types have expanded from a single DNA chip to include RNA chips,
protein chips, and micro-laboratories. They have shown strong vitality and good
application prospects in gene expression profile analysis, new gene discovery, gene
mutation and polymorphism analysis, genome library mapping, disease diagnosis
and prediction, drug screening, gene sequencing, and other research fields. This
technology was rated as one of the top ten scientific and technological advancements
in 1998.

A biochip refers to the use of light-guided in situ synthesis or micro-spotting
methods to orderly solidify a large number of biological macromolecules such
as nucleic acid fragments, polypeptide molecules, and even tissue sections, cells,
and other biological samples on the surface of a support (such as a glass slide,
silicon wafer, polyacrylamide gel, nylon membrane, etc.) to form a dense two-
dimensional molecular array. Then it hybridizes with the target molecules in the
labeled test biological sample. Through specific instruments, such as laser confocal
scanning or charge-coupled device (CCD), the intensity of the hybridization signal
is quickly, parallelly, and efficiently detected and analyzed, thereby judging the
quantity of target molecules in the sample. Because glass slides or silicon wafers
are commonly used as solid supports, and the preparation process simulates the
preparation technology of computer chips, it is called biochip technology. Its biggest
feature is its high-throughput parallel acquisition and processing of biological
information.

4.2.8.2 Piezoelectric Gene Sensor Technology

Biosensor technology is an emerging high-tech field. Because it can provide rapid
and effective analysis and detection methods, it has broad application prospects in
the fields of biomedicine, environmental monitoring, food hygiene, etc. Currently,
the most researched is the DNA biosensor system, among which the piezoelectric
gene sensor is a new type of DNA biosensor that combines molecular biology
technology, acoustics, and electronics. It is a hot spot in the research of biological
gene sensors. Its main advantage is that it has high detection sensitivity, which can
reach the ng level, even the pg level; and the information is intuitive, it does not need

94 4 Biological Computing Operators: Enzymes and Biochemical Operations

to be labeled for application in life science research, it can not separate samples, the
operation is simple, fast, and easy to connect online. Its basic working principle
is based on the “inverse piezoelectric effect” of piezoelectric dielectrics, that is,
when an electric field is applied in the direction of polarization of the piezoelectric
dielectric, it will produce mechanical deformation; when the external electric
field is removed, the deformation of the piezoelectric dielectric disappears. This
phenomenon of converting electrical energy into mechanical energy is the “inverse
piezoelectric effect”. The transducer excites sound waves in the piezoelectric
dielectric (usually quartz crystal), and uses sound waves as the means of detection.
The sensor surface first fixes a single-stranded DNA probe, and then adds a solution
to be tested containing a complementary DNA sequence for hybridization. The
formation of double-stranded DNA structure after hybridization increases the mass
of the sensor surface. Due to the sensitivity of the quartz resonator to mass changes,
it affects the frequency of sound waves. Because of its above advantages, using it
for DNA computation will improve the automation level of DNA computation.

4.2.8.3 Microchip Laboratory Technology

The ultimate goal of the development of biochip technology and biosensor tech-
nology is to fully integrate and automate the entire process of analysis, that is, to
manufacture micro total analysis systems or microchip laboratories (laboratory-
on-a-chip). The micro-laboratory (Lab-on-chip) integrates the entire process of
sample preparation, biochemical reactions, and detection and analysis to form
a micro-analysis system. At present, there are chip laboratories composed of
heaters, micropumps, microvalve controllers, microelectrodes, electrochemistry and
electroluminescence detectors, and there have been chips that integrate parts such
as biochemical reactions, sample preparation, detection and analysis. For example,
scientists from Nanogen, Affymetrix, the University of Pennsylvania School of
Medicine, and the University of Michigan have partially integrated the three parts
of sample preparation, chemical reactions, and detection by using heaters, valves,
pumps, microanalyzers, electrochemical detectors or optoelectronic detectors made
on the chip, and have successively made different structures of microchip laboratory
prototypes [17]. For example, the biochip designed and manufactured by Gene
Logic can separate DNA or RNA from the sample to be tested, and label it with
fluorescence, then when the sample flows past the oligonucleotide probe fixed
in the grid-like microchannel, it can capture the target nucleic acid sequence
complementary to it, and use its own developed detection equipment to detect and
analyze the hybridization results. Because the oligonucleotide probe on this chip has
a large adsorption surface area, it can sensitively detect changes in rare genes. At
the same time, because the microchannels designed by the chip have the function of
concentration and enrichment, it can accelerate the hybridization reaction, shorten
the test time, and thus reduce the test cost. In addition, there are also microchips
that integrate the preparation of samples and the process of PCR amplification.
Because the micro-laboratory has the characteristics of small size, easy to carry,

4.2 Biochemical Operations in Biocomputing 95

and can simultaneously parallel detect multiple biomolecules, it has a wide range of
applications in the biological field. The manufacture of microchip laboratories for
DNA computation is expected to build a truly fully automated DNA computer.

4.2.9 New Biochemical Operations and Techniques for
Biological Computing

Here we focus on the latest CRISPR-Cas9 and its derivative gene editing technology.
Given that DNA computation is a new method based on a large number of DNA
molecules and using molecular biology technology for computation, in its gene
route design process, it needs specifically functional components that can cooperate
in cells. How to design such functional components requires the help of gene editing
technology. Currently, the most widely used gene editing technologies are three,
including zinc finger nucleases (effectors nucleases), TALENs technology, and the
rapidly developing CRISPR-Cas9 technology. CRISPR-Cas9 and its derivative tech-
nologies are widely used in laboratories around the world due to their advantages
of simple production, high efficiency, easy control, and low cost compared to other
technologies.

There are many known types and components of the CRISPR-Cas system.
The CRISPR system composed of Cas9 protein from Streptococcus pyogenes has
attracted in-depth exploration by researchers due to its simple composition. This
system only has three necessary components, namely tracrRNA, CrRNA, and Cas9
nuclease.

According to the research of Jiang and others, the basic process of the
CRISPR/Cas9 system can be divided into three stages, namely the acquisition
period of the spacer sequence, the expression period of CRISPR/Cas, and the DNA
interference period [18].

During the spacer acquisition period, the system selectively cuts invading
plasmid or bacteriophage DNA fragments. The cut fragments that meet the criteria
are integrated into the CRISPR locus of the host genome to become new spacer
sequences, while the existing spacer sequences in CRISPR are “records” left from
previous foreign DNA invasions. Different spacer sequences are separated by repeat
sequences. The selection of spacer sequences is guided by the protospacer adjacent
motif (PAM) adjacent to the original spacer region, and CRISPR/Cas systems
from different species have different PAMs. There are also regions encoding the
Cas9 nuclease and non-coding areas that transcribe traCrRNA near the spacer and
repeat sequences [19]. During the expression period of CRISPR/Cas9, the system
transcribes the CRISPR array into long-chain pre-CrRNA (pre-CRISPR RNA), and
also transcribes trans-activating crRNA (tracrRNA) and Cas9, which are comple-
mentary to the repeat sequences in pre-crRNA. When tracrRNA complements the
region transcribed by the repeat sequences in pre-CrRNA, it forms double-stranded
RNA (guide RNA), which stimulates the activity of RNA-specific nucleases such

96 4 Biological Computing Operators: Enzymes and Biochemical Operations

as RNase III, cuts pre-CrRNA, and forms mature CrRNA with the participation
of Cas9. Each mature CrRNA contains a guide sequence of 2 nucleotide lengths
transcribed from the spacer and a region complementary to tracrRNA transcribed
from the repeat, where the guide sequence can complementarily bind to the invading
DNA [20]. During the DNA interference period, the complex of CrRNA and
tracrRNA, guide RNA (gRNA), guides the Cas9 nuclease to find the PAM sequence
on the foreign genome, and stays and recognizes at the PAM sequence. Once the
spacer sequence can fully complementarily pair with the sequence on the foreign
genome, the Cas9 protein will cut the invading DNA to cause breaks, thereby
destroying the invading DNA to protect the bacteria and achieve the purpose of
degrading foreign genetic material [21].

4.2.9.1 CRISPR/Cas9 Derived Technology

Single Base Editing Technology Based on CRISPR/dCas9
Point mutations in genes are the cause of most human genetic diseases. If they can
be repaired by precise means, it may bring new treatment strategies [22]. In the
presence of a homologous recombination template, point mutations can be achieved
by CRISPR/Cas9, but the random insertion and deletion of bases that may be
brought about by its induced non-homologous end joining (NHEJ) are potential
risk factors. The Cas9 mutants Cas9n and dCas9 have no function to cut double-
stranded DNA, but can play a targeting role; if there are proteins/structural domains
that can catalyze specific base conversion, the single base editing technology
guided by CRISPR/Cas9n/dCas9 can be constructed by referring to the design of
CRISPR/dCas9-FoKI.

In 2016, David Liu’s laboratory constructed a single base editor CBE (Cytosine
base editors, CBE) with nCas9 protein with single cutting activity and cytosine
deaminase; in 2017, it constructed ABE (Adenine base editor, ABE) single base
editor. CBE and ABE can use cytosine deaminase or modified adenine deaminase to
perform deamination reactions on cytosine (C) or adenine (A) within a certain range
of the target site, and after DNA repair and replication, they can complete C →.T
(G →.A) and A →.G (T →.C) base conversions without causing DNA double-strand
breaks [23]. However, ABE and CBE single base editors cannot simultaneously
perform these two types of base modifications. To solve this problem, Zhang and
others fused human cytosine deaminase hAID-adenine deaminase-Cas9n (SpCas9
D10A mutant) together to form a new dual base editor A&C-BEmax. It can achieve
efficient conversion of C →.T and A →.G on the target sequence, while the RNA
off-target level is greatly reduced, improving the editing efficiency of C →.T, while
the efficiency of A →.G is slightly reduced.

CRISPR/dCas9-FoK I Gene Editing Technology
The crRNA used by the CRISPR/Cas9 system can tolerate a certain degree of
mismatch, resulting in the production of off-target effects, limiting the application of
the CRISPR/Cas9 system in high-precision editing. In order to improve the accuracy

4.2 Biochemical Operations in Biocomputing 97

Fig. 4.7 (a) CRISPR/dCas9-FoK I editing technology; (b) Single base editing technology of
CRISPR/dCas9

of the Cas9 editing system and solve the off-target problem of CRISPR/Cas9 tech-
nology, Guilinger [24] and others adopted a strategy based on dCas9. Theoretically,
dCas9/sgRNA can only play a simple targeting guiding role and cannot induce DNA
breaks, similar to the DNA binding domain in ZFN or TALEN. In order to achieve
DNA cutting, the FoK introduced by it The cleavage structure domain of I nuclease
is connected with dCas9 to form the fusion protein fCas9, which is identical to the
design strategy of ZFN and TALEN. In human cell gene editing, the specificity of
fCas9 is more than 140 times higher than that of wild-type Cas9. And on highly
similar off-target sites, the specificity of fCas9 is at least 4 times higher than that of
Cas9n. The application of fCas9 will further enrich the Cas9 toolbox and provide
more comprehensive gene editing tools.

4.2.9.2 CRISPR/Cas12a Gene Editing Technology

CRISPR/Cas9 technology cannot achieve targeted sequences because the PAM
sequence it recognizes needs to be rich in the base G, and the Cas9 protein has a large
molecular weight, which is difficult to use in some cases. In fact, the CRISPR/Cas
mechanism plays an immune defense role in many bacteria, which includes various
CRISPR/Cas systems. In addition to the type II CRISPR/Cas system that uses Cas9
family nucleases as effector factors, there is another type II CRISPR/Cas system in

98 4 Biological Computing Operators: Enzymes and Biochemical Operations

Prevotella and Francisella, which is also classified as a type V CRISPR/Cas system
[25]. In 2015, the Zhang Feng team reported that Cpf1 (CRISPR from Prevotella
and Francisella 1) (now known as “Cas12a”) in the type V system is a functional
bacterial immune mechanism and can mediate effective gene editing in human cells
[25].

Unlike Cas9, Cas12a is guided by a CRISPR RNA (crRNA) and does not require
trans-activating crRNA (tracrRNA). In addition to inducing cis-cleavage of the
target DNA, binding to the target DNA also induces trans-cleavage of non-target
DNA.

When recognizing a PAM sequence rich in T, Cas12a can stimulate cis-cleavage
activity to cleave double-stranded DNA (dsDNA) targets. Cas12a is guided by a
single crRNA, catalyzes the production of mature crRNA, and when the crRNA-
Cas12a complex is formed, its conformation changes. Subsequently, this complex
recognizes specific PAM sites (5 ' .-TTTN-3 ' .) in the non-target strand of DNA, and
the RuVC structural domain cleaves the DNA target strand, producing 5 ' . sticky
protruding ends.

It is worth noting that Cas12a’s cleavage of single-stranded DNA (ssDNA)
targets is PAM-independent, which is Cas12a’s trans-cleavage activity. The Cas12a-
crRNA-target DNA ternary complex has non-specific ssDNA trans-cleavage activ-
ity. When the complex is formed, it releases single-strand deoxyribonuclease
(ssDNase) activity, indiscriminately cleaving nearby ssDNA. Literature [26, 27]
uses this feature to add a single-strand RNA reporter molecule connected with
a fluorescent group and a quenching group to the system, which can produce
fluorescence for easy detection. Recent work using Cas12a’s trans-cleavage function
for biosensing includes detecting viruses, mycoplasma, single nucleotide polymor-
phisms (SNP), exons, crop disease diagnosis, and genetically modified organisms
(GMOs) as well as small molecules.

CRISPR/Cas12a has advantages that CRISPR/Cas9 does not have, one of which
is that Cas12a requires a PAM sequence rich in T bases, which helps its use
in species with genomes rich in A/T bases. The Chen Jia research group at
ShanghaiTech University fused the DNA-cutting-inactive dCas12a with rat-derived
cytidine deaminase (APOBEC1) and found that it can effectively catalyze the
conversion of C to T bases in human cells, similar to Cas9-based base editors
[28]. Because it recognizes a PAM sequence rich in T bases, the Cas12a-based base
editing system can complement the Cas9-based base editing system, providing more
comprehensive technical conditions for related basic research and future clinical
applications.

4.2.9.3 Application of Gene Editing Technology in DNA Computing

(1) Construction of Gene Editing Technology and DNA Logic Gates
The DNA computing logic gate model is one of the fastest developing and most
widely used research directions in DNA computing. First, the DNA logic gate model
is the underlying component to achieve DNA computing and is the foundation of

4.2 Biochemical Operations in Biocomputing 99

DNA computing. Basic logic gates can be cascaded to form more complex logic
gates to complete more complex computing functions. In traditional electronic
circuits, signals are presented at different voltage levels, with logic gate signals
being true (logic high level or 1) or false (logic low level or 0). Logic gates
mainly include AND, OR, XOR, NOT, NAND, NOR, and XNOR [29–32]. In
2014, a research team from the Shenzhen University Affiliated Hospital proposed a
synthetic “CRISPR-Cas9-based AND gate genetic circuit” [33], which can be used
to identify and regulate bladder cancer cells. This genetic circuit uses the AND gate
as a model, integrates the cell information of two promoters (hTERT, hUPII) as
inputs, and only activates the output gene when both inputs are active in the tested
cell line. The output gene is luciferase.

(2) Biosensing Platform Based on CRISPR/Cas12a Logic Gates
In 2022, Gong’s research team [34] proposed a CRISPR/Cas12a biosensing plat-
form based on AND logic gates, which can be used for sensitive colorimetric
detection of dual miRNAs. The occurrence of a disease is often accompanied by
abnormal expression of different miRNAs, and the same miRNA may also be
abnormally expressed in different diseases. Therefore, developing a biosensor that
can simultaneously detect multiple nucleic acids can greatly improve the accuracy
of disease detection.

In this study, DNA probes were designed to recognize the binary input of
miRNA, with miR-944 and miR-205 as model analytes. Only in the presence
of dual miRNAs, the output signal of the AND logic gate is 1, triggering the
release of DNA and activating the CRISPR/Cas12a system to cleave single-stranded
DNA (ssDNA) in trans. The ssDNA on the magnetic beads is cut by the activated
CRISPR/Cas12a, causing the glucose oxidase (GOx) to separate from the magnetic
beads, subsequently producing a colorimetric signal. The color change caused by 1
pM target miRNA can be directly distinguished by the naked eye, and the detection
limit of the instrument reaches 36.4 fM. Overexpressed miR-205 and miR-944
were detected in real human serum, enabling us to distinguish between lung cancer
patients and healthy individuals.

This research achievement can use a single crRNA to achieve simultaneous
detection of dual miRNAs by CRISPR/Cas12a, avoiding the use of complex nucleic
acid amplification and bulky equipment. The current method can expand the
application of CRISPR/Cas12a for the detection of multiple biomarkers and precise
disease diagnosis.

4.2.10 New Instruments Involved in Biological Computing

4.2.10.1 Atomic Force Microscope

The most direct means of detecting DNA computation results is image observation,
and the self-assembly size in DNA computation is at the nanometer level, which

100 4 Biological Computing Operators: Enzymes and Biochemical Operations

cannot be directly observed by traditional detection methods. Therefore, it is
necessary to use advanced imaging tools, namely the Atomic Force Microscope
(AFM) [35, 36].

The atomic force microscope can characterize the contour morphology of various
samples with high resolution, analyze and interact with various sample surfaces, and
also manipulate atoms and perform nanoscale processing using the tip. The atomic
force microscope can not only see atoms and molecules, but also manipulate them,
and has successively achieved the manipulation of small molecules and organic
molecules. The atomic force microscope can observe and manipulate uncharged
positions in the atmospheric environment, and has high practicality in the detection
and manipulation of biomolecules. The atomic force microscope can be used to
analyze force spectra, and the detection of sample surface morphology is based
on the force between the sample surface and the probe. Therefore, the atomic
force microscope inherently has the function of detecting weak forces. Now, force
spectrum analysis based on atomic microscopy is the most widely used single-
molecule mechanics experimental technique.

The atomic force microscope distinguishes the surface of the sample by detecting
the tiny deformation caused by the interaction between the probe and the sample.
The cantilever of the probe is sensitive to tiny deformations, and the tip of the
cantilever is fixed with an extremely small probe, usually with a diameter of ten
to several tens of nanometers. When the probe approaches the sample and contacts
the sample, the two will produce interaction forces, and different forces will cause
different deformations of the cantilever. This deformation is detected by a laser or

Fig. 4.8 Schematic diagram of AFM principle

4.2 Biochemical Operations in Biocomputing 101

tunneling current to obtain information about the sample surface. The schematic
diagram of the principle is shown below.

Atomic force microscopy is divided into three working modes according to the
contact mode of the probe and the sample: contact mode, tapping mode, and non-
contact mode. Or it can be divided according to the working environment: gas-like
mode, liquid mode, or gas-liquid mixed mode. For flexible and fragile samples, the
tapping mode has a higher resolution and will not damage the sample structure.
For biologically active samples, the liquid mode can keep the sample under natural
environmental conditions for detection [37]. For DNA self-assembled samples, both
gas-like and liquid models can be used. The sample under the gas-like mode will be
lower than the sample under the liquid, and the sample under the liquid will shift
position with the scanning of the probe tip. Therefore, which scanning mode to
adopt depends on the comprehensive consideration of the experimenter.

4.2.10.2 Super-Resolution Fluorescence Microscope

The fluorescence microscope is affected by the wavelength of light, and can
generally only reach 0.2–0.4 μ.m, so seeing molecules at the nanometer level is a
very challenging task. Traditional characterization methods for observing nucleic
acid nanostructures in a single molecule manner mainly rely on atomic force
microscopy (AFM) and electron microscopy (EM). Although these methods can
provide information about the assembly quality and overall structural features of
nanostructures, they also have their limitations. Compared with AFM, EM is more
effective in observing large sample areas, but it is insufficient for visualization due
to lack of contrast under non-biological conditions. Most importantly, both methods
lack chemical (chain) specificity and are limited to electron density and surface
morphology maps.

Super-resolution fluorescence microscopy provides biologists and nanoscientists
with important tools for studying single molecule conformations and dynamics in
nanoscale biomolecules and synthetic systems [38, 39]. The progress of methods
such as STED, SIM, PALM, STORM, and PAINT has enabled the optical resolution
of subcellular and nanoscale structures to reach 10–20 nm.

Super-resolution fluorescence microscopy provides a method for replacing
nucleic acid nanostructure microscopy, with single-chain visibility and high
specificity multiplex detection, and operates in a biocompatible environment,
belonging to the stochastic localization microscopy system (also known as single
molecule localization microscopy or SMLM). In short, stochastic localization super-
resolution visualization is achieved by randomly switching each target between the
fluorescent on and off states, separating the nearby target fluorescence emissions,
and using sub-diffraction limit accuracy to determine their respective positions.
These methods include PALM (photoactivated localization microscopy) [40, 41],
STORM (stochastic optical reconstruction microscopy) [42, 43] and PAINT (points
accumulation for imaging in nanoscale topography) [44] and its various variants,
achieving stochastic single molecule conversion.

102 4 Biological Computing Operators: Enzymes and Biochemical Operations

Fig. 4.9 DNA-PAINT technology

Far-field super-resolution fluorescence microscopy has allowed the observation
of biomolecules and synthetic nanoscale systems with nanoscale features, and has
the ability of chemical specificity and multiplexing. DNA-PAINT (points accumu-
lation for imaging in nanoscale topography based on DNA) is a super-resolution
method that uses the programmability between short oligonucleotide chains to
achieve single molecule labeling and visualization resolution of at least 5–10 nm.
DNA-PAINT provides a characterization method for nucleic acid nanostructures
with high spatial resolution and single-chain visibility.

Methods based on the PAINT principle rely on the diffusion and random
instantaneous binding of specific fluorescent groups with conjugated affinity probes.
When bound to the target, the fluorescent group temporarily stays and produces

4.2 Biochemical Operations in Biocomputing 103

a noticeable bright flicker on the recorded camera frame. The relative brightness
(or signal-to-noise ratio of the flicker) is determined by the cumulative photon
emission of the bound background relative to the unbound free diffusion probe,
and the signal can be enhanced by placing the sample in a total internal reflection
(TIR) illumination setting. After introducing the PAINT principle, researchers
have developed several variants of different affinity probes (including DNA-
PAINT, uPAINT, BALM, Jungmann, etc.). Instantaneous binding between short
oligonucleotide chains can be used as an affinity probe to produce a flicker
pattern suitable for super-resolution imaging (DNA-PAINT). Short oligonucleotide
chains (“docking chains”) are labeled on molecules of interest and complementary
sequences (“imaging chains”). This method has been rapidly applied to the study
of nucleic acid nanostructure conformation and defects, single molecule binding
dynamics, and nucleic acid substrate detection, etc. [45, 46].

4.2.10.3 DNA Synthesizer

The advancement of technology often drives theoretical innovation and break-
throughs. The theory and related experimental research of computation and storage
based on DNA molecules are non-traditional computation and high-density storage
methods developed on the basis of DNA synthesis and sequencing technology.

The emergence of artificially synthesized DNA is the technical basis for the
realization of DNA computation. DNA synthesis is the starting point for using
DNA molecules for information encoding, storage, and computation. Since 1994,
when Adleman used artificially synthesized DNA molecules to encode the vertices
and connecting edges of a graph, DNA computation and DNA programmable nano
self-assembly technology have relied on the artificial synthesis of DNA molecules.
The quality and synthesis cost of artificially synthesized DNA encoding sequences
have always been one of the important factors affecting the development of DNA
computation and DNA nanotechnology.

The DNA synthesizer, which serves as the starting point for DNA coding storage
and computing tools, is an automated instrument for synthesizing DNA or RNA.
It generally uses solid-phase synthesis methods, and the automated design of the
instrument adds a specific nucleotide pre-encoded design to the oligonucleotide
chain each time, extending and lengthening it. Each added nucleotide uses the same
chemical reaction to interact with the corresponding purine or pyrimidine base. The
biochemical reactions used vary with different instruments, and phosphoramidite
method for artificial DNA synthesis is currently the most widely used method.

1. Steps and Working Principles of Automatic DNA Synthesis
The general operation steps of the DNA synthesizer are introduced using phospho-
ramidite oligonucleotide synthesis as an example. The reagents for phosphoramidite
DNA synthesis include: DMT protecting the 5 ' .-hydroxyl of the base, A, G, C,
T phosphoramidite monomers, tetrazole coupling catalyst, acetic anhydride, N-

104 4 Biological Computing Operators: Enzymes and Biochemical Operations

Fig. 4.10 Laboratory small
DNA synthesizer

methylimidazole capping reagent, trichloroacetic acid (TCA) deprotection solution,
12 oxidation mixture, acetonitrile cleaning solvent, and ammonia cleavage solution.
Phosphoramidite solid-phase automatic synthesis includes 4 basic steps:

The first step is to react the nucleotide with the active group pre-connected to the
solid-phase carrier CPG with trichloroacetic acid, remove its 5 ' .-hydroxyl protecting
group DMT, and obtain the free 5 ' .-hydroxyl.

The second step, the raw material for synthesizing DNA, the phosphoramidite
protected nucleotide monomer, is mixed with the activator tetrazole to obtain the
nucleotide phosphite activated intermediate. Its 3 ' . end is activated, the 5 ' .-hydroxyl
is still protected by DMT, and it undergoes condensation reaction with the free 5 ' .-
hydroxyl in the solution.

The third step is the capping reaction. In the condensation reaction, a very small
number of 5 ' .-hydroxyls may not participate in the reaction (less than 2%). They are
terminated by acetic anhydride and 1-methylimidazole to prevent further reaction.
These short fragments can be separated during purification.

The fourth step, under the action of the oxidant iodine, the phosphoramidite form
is converted into a more stable triphosphate.

After the above four steps, a deoxynucleotide is connected to the nucleotide on
the solid-phase carrier. Then, its 5 ' .-hydroxyl protecting group DMT is removed with
trichloroacetic acid, and the above steps are repeated until all the required bases are
attached. The synthesis efficiency can be determined by observing the color of the
TCA treatment stage during the synthesis process.

Through high-temperature treatment with ammonia, the primer connected to
CPG is cut off, and the primer is purified by OPC, page and other means.
The finished primer is concentrated with C18, desalted, and precipitated. The
precipitated primer is suspended in water, quantified by measuring OD260, and
packaged according to the order requirements.

4.2 Biochemical Operations in Biocomputing 105

Fig. 4.11 Principle of phosphoramidite method solid phase automatic DNA synthesis

2. Chip-Type DNA Synthesizer
The main manufacturers of current DNA synthesizers are committed to the per-
fection of machine performance and the exploration of application fields, as
well as the development and research of high-efficiency, high-yield instruments.
High-throughput, high-density chip-type DNA synthesizers will be the future
development direction, which can simultaneously synthesize tens of thousands of
different DNAs on the DNA synthesis chip. In the chip-type DNA synthesizer, the
DNA synthesis chip containing a large number of synthesis pools is placed in the
synthesizer. The synthesizer controls the electrode potential of each synthesis pool
in the chip. On the chip (generally 12,000 or 90,000 synthesis pools, that is, a chip
that can simultaneously synthesize 12,000 or 90,000 DNAs), according to the DNA
sequence designed by the software, a certain length of DNA is synthesized from
the 3 ' . end to the 5 ' . end of the primer to be synthesized. The adjacent nucleotides
are connected by a 3 ' . →.5 ' . phosphodiester bond, thereby synthesizing the required
DNA/RNA. After synthesis, a large amount of DNA is cut off from the chip, and a
single tube will contain tens of thousands of artificially synthesized DNAs.

In addition to high-throughput chip synthesis, because the number of base pairs
of most nucleic acids needed by people far exceeds the number of base pairs
of the longest nucleic acid chain that a DNA synthesizer can synthesize, chip-
type DNA synthesizers can break through the existing nucleic acid synthesis.
The number of base pairs is limited, and super-long DNA chains are quickly
synthesized. In addition, chip-type DNA synthesizers also have advantages such

106 4 Biological Computing Operators: Enzymes and Biochemical Operations

as in-situ electrochemical synthesis on the chip, electrochemical deprotection, and
fast synthesis speed, greatly improving the efficiency of artificial DNA synthesis.

4.2.10.4 DNA Sequencer

Gene sequencing is the technical foundation for large-scale DNA data storage. The
rapid development of the Human Genome Project and the resulting gene sequencing
technology is the prerequisite for the realization of large-scale DNA data storage.
Currently, the cost of DNA sequencing has been reduced to about one cent per
base, which greatly promotes the development of theories and technologies related
to DNA molecular storage. At the same time, the third-generation nanopore DNA
sequencer can directly convert the encoded information carried by a large number
of DNA molecules into photoelectric signals through specially designed nanopores,
so it has high throughput and highly parallel data reading characteristics, and may
become the universal output device for future DNA molecular computers.

1. Basic Working Principle of DNA Sequencer
The working principle of the current DNA sequencer is mainly based on the double
deoxy chain termination method invented by Sanger or the chemical degradation
method invented by Maxam-Gilbert. Although these two methods are different
in principle, they both start the extension of the nucleotide chain at a fixed site,
randomly terminate at a specific base, and produce four groups of nucleotide
chains of different lengths with A, T, C, and G at the end. The DNA sequence is
obtained by separating and detecting the fragments on the denatured polyacrylamide
gel by electrophoresis. Because the double deoxy chain termination method is
simpler and more suitable for optical automatic detection, it is widely used in
fully automatic DNA sequencers that purely aim to determine the DNA sequence.
The chemical degradation method has important application value in studying the
secondary structure of DNA and the interaction between protein and DNA. Here,
the sequencing principle of the double deoxy chain termination method is mainly
introduced. The specific principle is described in Sect. 4.2.7.2, and the schematic
diagram is shown in Fig. 4.12.

2. Development of DNA Sequencer
First-Generation DNA Sequencer
The first-generation DNA sequencer is based on the classic double deoxy
nucleotide termination sequencing method proposed by Sanger and others.
Subsequently, in the mid-1980s, automatic sequencers appeared that replaced
radioactive isotope labeling with fluorescent labeling and replaced radioactive
autoradiography with fluorescent signal receivers and computer signal analysis
systems. Later, the capillary electrophoresis technology that appeared in the
mid-1990s greatly increased the throughput of sequencing. The traditional first-
generation sequencing technology has the advantages of high accuracy and
simplicity and speed, but due to the low sequencing throughput, it is only suitable
for the identification of small sample genetic disease genes, and it is difficult to

4.2 Biochemical Operations in Biocomputing 107

Fig. 4.12 Principle of DNA sequencing

complete the screening of large sample cases without clear candidate genes or a
large number of candidate genes.
Second-Generation DNA Sequencer
The second-generation DNA sequencer uses the second-generation sequencing
technology developed in this century. By connecting the ends of the fragmented
genome DNA to be sequenced with adapters, millions of spatially fixed PCR
clone arrays are produced by different methods. Then carry out primer hybridiza-
tion and enzyme extension reactions. Complete DNA sequence information is
obtained through computer analysis. DNA sequencers using second-generation
sequencing technology not only maintain high accuracy, but also greatly reduce
sequencing costs and greatly increase sequencing speed. The most notable
feature of the second-generation sequencing technology is high throughput,

108 4 Biological Computing Operators: Enzymes and Biochemical Operations

which can sequence hundreds of thousands to millions of DNA molecules at
a time, making it convenient and easy to sequence the transcriptome or deep
sequencing of the genome of a species.
Third-Generation DNA Sequencer
The notable feature of the third-generation sequencer is long read length,
which can significantly increase the sequencing read length by 10–50 times
while maintaining high accuracy. The sequencing technology used by the third-
generation sequencer mainly solves the PCR amplification process required for
the preparation of the sequencing library by the second-generation sequencer,
to a certain extent eliminates the systematic errors introduced by the PCR
amplification process, and also reduces the running time required for overall
sequencing.
Fourth-Generation DNA Sequencer
The sequencing technology used by the fourth-generation DNA sequencer also
belongs to single-molecule sequencing, but its principle of using nanopore
chip to detect single-molecule sequencing signals no longer depends on high-
speed cameras or high-resolution CCD cameras, which greatly reduces the
cost of detection equipment. The basic principle of most nanopore sequencing
technologies is to detect the affected current or light signal when a DNA molecule
passes through a hole. Because it has a qualitative leap compared with the
third-generation sequencing technology, it is usually called the fourth-generation
sequencing technology.

4.3 Key Technology of Biological Computing: Gel
Electrophoresis

Electrophoresis is a type of separation identification technology designed based
on the physical and chemical properties of samples. It separates samples by the
difference in the ability of samples to move in conductive media under the action
of an electric field [47]. Generally, cations migrate towards the negatively charged
cathode, and cations with a larger charge ratio migrate faster than those with
a smaller charge ratio. Anions migrate towards the positively charged anode,
while neutral ions remain stationary and are not affected by the electric field.
In 1807, Professors Strakhov and Roys of Moscow University first observed the
electrophoretic phenomenon, noting that the introduction of a constant electric field
would cause the migration of clay particles dispersed in water [48]. Electrophoresis
is widely used in laboratories for the analysis of large biological molecules such
as DNA, RNA, and proteins. Based on the medium system and physicochemi-
cal characteristics, it mainly includes gel electrophoresis, immunoelectrophoresis,
capillary electrophoresis, dielectrophoresis, and isoelectric focusing, etc. These
electrophoretic techniques are used in bioinformatics for the separation, extraction,
and purification of solutions.

4.3 Key Technology of Biological Computing: Gel Electrophoresis 109

4.3.1 Basic Principles

According to the double-layer theory related to the electrophoretic particle
microsystem, the suspended particles to be separated have surface charges. An
external electric field applies a static Coulomb force to them, which is affected
by the microenvironment of the particle surface (Fig. 4.13). Generally, the surface
charges of the particles to be separated in the electrophoretic system are shielded by
the ion diffusion layer, which has a consistent charge property, but opposite to the
charge property of the particle surface. The electric field applies a static Coulomb
force to the particles to be separated wrapped in the diffusion layer, and its direction
is opposite to the force acting on the diffusion layer. The latter force is not actually
acting on the particles to be separated, but on the ions in the diffusion layer at a
certain distance from the particle surface, and is transmitted to the particle surface
through viscous stress, manifesting as electrophoretic resistance. When an electric
field is applied, the charged particles to be separated move stably in the diffusion
layer, and the total force is zero [49].

Considering the viscosity of the diffusion layer on the resistance of the moving
particles, under a certain electric field strength E, the drift velocity of the suspended
particles ν . is proportional to the external electric field, then its electrophoretic
migration rate μe . is defined as:

. μe = ν

E

The most famous electrophoresis theory was proposed by Smoluchowski in 1903
[50]:

. μe = εrε0ζ

η

Fig. 4.13 Schematic diagram
of electrophoresis principle

110 4 Biological Computing Operators: Enzymes and Biochemical Operations

Where, εr . is the dielectric constant of the diffusion system, ε0 . is the vacuum
dielectric constant, η . is the dynamic viscosity of the diffusion medium, ζ . is the
Zeta potential.

4.3.2 Gel Electrophoresis

Gel electrophoresis is a common method for separating and identifying large
biological molecules (DNA, RNA, and proteins). The migration speed of samples
on the gel carrier is directly related to the molecular size and surface charge, and
the electric field that drives the sample movement is composed of the positive and
negative poles of the electrophoresis instrument. The sample is placed in the sample
hole of the gel material, the gel as a whole is placed in the electrophoresis chamber,
and connected to a constant voltage source (Fig. 4.14). When an electric field is
applied, larger molecules move relatively slowly in the gel, while smaller molecules
move faster, resulting in different bands of large biological molecules with different
physicochemical properties on the gel for subsequent analysis operations.

The most commonly used types of gels are agarose gels and polyacrylamide gels.
Each type of gel is suitable for different types and sizes of samples depending on
the preparation method. Polyacrylamide gels have a high resolution for small DNA
fragments (5–500 bp), agarose gels have a relatively low resolution for DNA, but
a larger separation range, usually used for DNA fragments of 50–20,000 bp, and
the resolution of pulsed field gel electrophoresis may exceed 6 Mb. Polyacrylamide
gels are electrophoresed in a vertical placement mode, while agarose gels are usually
electrophoresed in a horizontal placement mode. The two have different preparation
methods, agarose is thermally cured, and polyacrylamide is formed by a chemical
polymerization reaction.

In addition to the common analysis of nucleic acid samples, gel electrophore-
sis can also be used for protein analysis and identification. Polyacrylamide gel
electrophoresis has both charge effect and molecular sieve effect, which can
separate proteins with the same molecular size but different numbers of charges.
Further, through two-dimensional electrophoresis technology, proteins with the

Fig. 4.14 Schematic diagram of gel electrophoresis

4.3 Key Technology of Biological Computing: Gel Electrophoresis 111

same number of charges but different molecular sizes can be separated. Based on
the addition of antigen-antibody reactions, agarose immunoelectrophoresis can be
used for the purity identification of protein preparations, the composition analysis
of protein mixtures, serological characteristics, and other systematic studies.

4.3.3 Immunoelectrophoresis

Immunoelectrophoresis is a general term for a series of electrophoresis methods
for separating and characterizing proteins based on antigen-antibody reactions [51].
In the electrophoresis system, the antibody reacts with the protein to be identified
through non-covalent bond chemical reactions (Fig. 4.15).

Immunoelectrophoresis developed and was widely used in the second half
of the twentieth century, promoting the development of biology and medicine.
According to the physicochemical characteristics of the electrophoresis system, it
is divided into: one-dimensional immunoelectrophoresis, two-dimensional quanti-
tative immunoelectrophoresis, rocket immunoelectrophoresis, fusion rocket immu-
noelectrophoresis, and affinity immunoelectrophoresis.

Although immunoelectrophoresis has obvious advantages, two factors limit its
further development: (1) the labor-intensive work in the laboratory requires a large
number of experienced experimental technicians to participate, limiting large-scale
automation; (2) the technical principle requires a large amount of antibody use,
which raises the barrier to the application of the technology.

Fig. 4.15 Schematic diagram of immunoelectrophoresis

112 4 Biological Computing Operators: Enzymes and Biochemical Operations

4.3.4 Capillary Electrophoresis

Capillary electrophoresis (CE) is a series of electrophoresis separation techniques
performed in capillaries and micro-nano fluid channels with sub-millimeter diame-
ters [52]. Generally, CE refers to capillary zone electrophoresis, capillary gel elec-
trophoresis, capillary isoelectric focusing, capillary isotachophoresis, and micellar
electrokinetic chromatography. In CE methods, the sample migrates through the
electrolyte solution under the influence of an electric field, and separation is carried
out according to ion migration rate, non-covalent interactions, etc. [53]. In addition,
samples can be concentrated or aggregated through conductivity and pH gradients
to achieve further efficient separation and identification.

The equipment required for capillary electrophoresis is relatively simple
(Fig. 4.16). The main components of this system are the sample pool, source
bottle, capillary path, positive and negative electrodes, high-voltage power supply,
high-sensitivity detector, laser probe, and data processing device. The sample
bottle, source bottle, and capillary are filled with electrolyte, such as aqueous buffer
solution. To introduce the sample, the capillary inlet is inserted into the sample pool,
and the sample is introduced into the capillary by capillary siphon or electrodynamic
pressure, and communicates with the source bottle. The sample migration is driven
by the electric field applied between the source bottle and the sample bottle.

The high-voltage power supply device provides power. In common CE instru-
ments, the sample is separated due to its electrophoretic migration and detected near
the capillary outlet. The detector signal is sent to the processing device, and the data
is displayed as an electrophoretic peak map. Although the sample volume in CE is
very small (usually only a few nanoliters of liquid are introduced into the capillary),
the injection strategy causes the analyte concentration to be concentrated in the

Fig. 4.16 Schematic diagram
of capillary electrophoresis

4.3 Key Technology of Biological Computing: Gel Electrophoresis 113

capillary, enabling high-sensitivity detection. With the advancement of technology,
parallel capillary arrays have emerged to achieve larger sample processing volumes.
Array electrophoresis with 96 capillaries can be used for high-throughput capillary
DNA sequencing. The capillary array inlet accepts samples from a standard 96-
well plate, and other basic principles are similar to those shown in Fig. 4.16 [54].
Capillary electrophoresis has become an important and cost-effective method for
DNA sequencing, which can currently provide high-throughput and high-accuracy
sequencing information, and the sequencing speed is greatly guaranteed [55].

In recent years, the developed affinity capillary electrophoresis is a special
type of capillary electrophoresis, which uses intermolecular interactions to under-
stand the interaction information between proteins and ligands, and has a wide
range of applications. Ren and others introduced new high-affinity interactions
from the hydrophobic and polar interactions between IL-1 α . and the aptamer by
adding modified nucleotides to the aptamer [56]. Huang and other researchers
studied protein-protein interactions, using 6-carboxyfluorescein-labeled α .-thrombin
binding aptamer as a selective fluorescent probe, and studied the binding site
information of protein-protein and protein-DNA interactions [57]. Affinity capillary
electrophoresis has simple, fast, and low sample demand analysis characteristics,
provides in-depth and efficient details for sample ligand identification, sample
separation and detection, and has been proven to have high practicality in life
science research.

4.3.5 Dielectrophoresis

Dielectrophoresis (DEP) is an electrophoretic technique that applies force to
dielectric particles under the action of a non-uniform electric field [58]. All sample
particles in the diffusion system show dielectrophoretic activity under the action of
an electric field [59]. The intensity of the force largely depends on the electrical
properties of the medium and particles, the shape and size of the particles, and the
frequency of the electric field (Fig. 4.17). An externally applied electric field of a
specific frequency can flexibly manipulate sample particles, used for cell separation,
directional control of nanomaterials, and other research work [60].

The simplest theoretical model describes the sample to be separated as a uniform
sphere surrounded by a conductive medium. For a uniform sphere with a radius of
r , and a complex dielectric constant of ε∗

p ., in a medium with a complex dielectric
constant of ε∗

m ., the force applied under time-averaged conditions is [59]:

. < FDEP >= 2πr3εmRe{ ε∗
p − ε∗

m

ε∗
p + 2ε∗

m

}∇|Erms |2

Specifically, when polarized particles are suspended in a non-uniform electric
field, dielectrophoretic behavior occurs. The electric field polarizes the particles, and

114 4 Biological Computing Operators: Enzymes and Biochemical Operations

Fig. 4.17 Schematic diagram of dielectrophoresis

then the two poles along the electric field lines are subjected to a force, which can be
attractive or repulsive depending on the direction of the dipole. Because the electric
field is not uniform, the pole subjected to the maximum electric field will overwhelm
the other pole, and the particle will move. The orientation of the dipole depends on
the relative polarization rate of the particle and the medium, which complies with
the Maxwell-Wagner-Sillars polarization. Since the direction of the force depends
on the gradient of the electric field rather than the direction of the electric field, DEP
occurs in both AC and DC electric fields. Since the relative polarization rate of the
particle and the medium is frequency-related, changing the excitation signal and the
way of measuring force changes can be used to determine the electrical properties
of the particles.

DEP can be used to separate particles with different polarization rates, as they
move in different directions under a given AC electric field frequency. Based on
the understanding that biological cells have dielectric properties, DEP has many
applications in medicine, including cancer cell separation and platelet separation,
medical diagnosis, drug discovery, cell therapy, and other fields [61–63]. DEP has
been used for the separation of live and dead cells, and the remaining live cells after
separation still have vitality or are used for forced contact between selected single
cells to study cell-cell interactions [64]. DEP is also combined with semiconductor
chip technology to develop DEPArray technology, which can manage thousands of
cells in microfluidic devices [65].

4.3.6 Isotachophoresis

Isotachophoresis (ITP) is a technique in analytical chemistry used for the selective
separation and concentration of ionic analytes [66]. Charged samples are separated
according to ion mobility, where ion mobility refers to the speed at which ions

4.4 Key Technology in Biological Computing: Polymerase Chain Reaction 115

Fig. 4.18 Schematic diagram of isoelectric focusing

migrate in an electric field. The classic ITP separation technique uses a discon-
tinuous buffer system, and the sample is introduced between the fast electrolyte
area and the slow electrolyte area. The mobility of the leading fast electrolyte is
higher than that of the sample components, and the mobility of the trailing slow
electrolyte is lower than that of the sample components. The separated sample
components are sandwiched in the middle according to their different mobilities.
Under the action of a strong electric field, the separated sample components move
in the gap between the leading electrolyte and the trailing electrolyte, ultimately
achieving separation (Fig. 4.18). The currently popular form of ITP is transient ITP,
which alleviates the limitations of traditional ITP’s limited separation capacity due
to overlapping analyte bands. In transient ITP, the analytes are first concentrated by
ITP, and then can be separated by zone electrophoresis. Transient ITP has a wider
range of applications than traditional ITP, and can easily serve as a pre-enrichment
step in capillary electrophoresis (CE) separation, making CE more sensitive and
achieving better separation efficiency [67].

4.4 Key Technology in Biological Computing: Polymerase
Chain Reaction

Polymerase Chain Reaction (PCR) is a molecular biology technique based on the
mechanism of DNA molecule replication. It achieves rapid amplification of DNA
sequences under thermal cycling conditions through specific primers and DNA
polymerase [4]. During the PCR process, the DNA template denatures into a single
strand at high temperatures, then binds to the target sequence at a lower temperature
through specific primers, and finally, new chain synthesis is carried out by DNA
polymerase at an appropriate temperature. Primers with higher affinity bind to the
target sequence faster, thereby rapidly amplifying the target DNA fragment after
several thermal cycles. In 1983, American biochemist Kary Mullis first invented the

116 4 Biological Computing Operators: Enzymes and Biochemical Operations

PCR technique. He found that by simulating the DNA replication mechanism in
organisms, rapid amplification of DNA can be achieved under laboratory conditions
[68]. PCR technology is widely used in the laboratory for DNA amplification and
analysis, and in bioinformatics for amplifying and extracting solution spaces and
implementing “amplification” operations. Depending on the purpose of the exper-
iment and technical characteristics, it mainly includes quantitative PCR (qPCR),
reverse transcription PCR (RT-PCR), digital PCR (dPCR), and multiplex PCR.

4.4.1 The Journey of PCR Invention

On a hot afternoon in May 1983, Kary Mullis drove his silver Honda from Berkeley,
crossed over Coverdale, and headed towards Anderson Canyon. The branches of the
California buckeye stretched over Highway 128, the pink and white branches looked
particularly cold in the sunset, and the fragrance of the flowers filled the warm air.
It was a night full of buckeye fragrance, but Mullis had a vague restlessness in
his heart. His thoughts flew back to the lab, images of DNA chains curling and
floating in his mind. He was busy with his favorite pastime—thinking about how
to read the sequence of the king of molecules, DNA. The complexity of DNA and
the infinite possibilities behind it fascinated Mullis. He realized that if he could
decipher the blueprint of DNA, many genetic defects and disease tragedies could be
predicted and avoided. An idea suddenly flashed in Mullis’s mind: if he could design
a short synthetic DNA fragment to recognize a specific sequence, and then start a
program that allows the sequence to continuously replicate itself, he could solve
his problem. This idea, although simple, was revolutionary. One of the instincts of
DNA molecules is to replicate themselves, and Mullis wanted to take advantage of
this natural characteristic.

That night, Mullis stopped the car and hastily sketched his idea on an envelope
with a pencil. His girlfriend Jennifer was asleep next to him, oblivious to Mullis’s
sudden inspiration. Mullis excitedly calculated that if this process was repeated 10
times, he could get over 1000 copies of any DNA fragment. 20 cycles would bring
1 million copies, and 30 cycles would be 1 billion copies [68, 69]! Mullis knew that
his idea would change the rules of molecular biology. He returned to the lab and
started the first experiment, trying to start with human DNA. Despite slow progress,
Mullis did not give up. Finally, on the night of December 16, 1983, he successfully
achieved rapid amplification of DNA. This achievement not only shocked Mullis but
also shocked the entire scientific community. His invention was named Polymerase
Chain Reaction (PCR) (Fig. 4.19).

However, the perfection of PCR technology could not be separated from another
key discovery—Taq polymerase. In 1976, Chien Chia-yun, a female scientist from
Taiwan, China, extracted Taq polymerase, which can withstand high temperatures,
from Thermus aquaticus during her postgraduate studies in the Department of
Biology at the University of Cincinnati. This enzyme was later used to replace
the heat-sensitive E. coli DNA polymerase, greatly simplifying PCR work [4].

4.4 Key Technology in Biological Computing: Polymerase Chain Reaction 117

Fig. 4.19 The inspirational journey of Mullis’s invention of PCR

Fig. 4.20 Schematic diagram of the basic principle of PC

The invention of PCR technology completely changed the research methods of
molecular biology, making rapid replication and analysis of DNA possible. This
invention won Mullis the 1993 Nobel Prize in Chemistry, and his name was thus
recorded in the annals of science.

4.4.2 Basic Principles

The basic principle of Polymerase Chain Reaction (PCR) is based on the replica-
tion mechanism of DNA molecules. In the PCR process, specific primers, DNA
polymerase, and thermal cycling conditions work together on the DNA template
to achieve rapid amplification of its specific sequence. This process involves three
main steps: denaturation, annealing, and extension (Fig. 4.20) [4].

118 4 Biological Computing Operators: Enzymes and Biochemical Operations

Denaturation Stage Under high temperature conditions (usually 94–98 ◦ .C),
double-stranded DNA unwinds into two single strands. This step is achieved by
breaking the hydrogen bonds in the DNA double helix structure.

Annealing Stage The temperature is lowered (usually 50–65 ◦ .C), allowing primers
rich in specific sequences to bind specifically to the single-stranded DNA template.
The design of the primers is crucial because they determine the specificity and
efficiency of amplification.

Extension Stage At an appropriate temperature (usually 72 ◦ .C), DNA polymerase
synthesizes new complementary DNA strands along the template strand. The choice
of DNA polymerase is also very critical because it must maintain activity and
stability under PCR cycling conditions.

Where, E represents the amplification efficiency, slope is the slope obtained from
the logarithmic linear stage of the real-time PCR amplification curve [70]. The most
famous PCR theory was proposed by Mullis in 1983, who found that by simulating
the DNA replication mechanism in organisms, rapid amplification of DNA can be
achieved under laboratory conditions [71]. The core of PCR technology lies in the
choice of DNA polymerase and the design of primers, which directly affect the
specificity and efficiency of the PCR reaction.

The amplification efficiency of PCR can be represented by the following formula:

. E = (10− 1
slope − 1) × 100%

(1) Quantitative PCR (qPCR)
Quantitative PCR (qPCR), also known as real-time PCR, is an advanced technique
for accurately quantifying the number of specific sequences in DNA or RNA
samples. qPCR technology, by combining the amplification ability of traditional
PCR and fluorescence detection technology, can monitor the quantity changes of
target sequences in real time during the amplification process [72]. In qPCR, the
DNA or reverse-transcribed RNA in the sample is first amplified by specific primers
and DNA polymerase, and fluorescently labeled probes or dyes are used to detect
the quantity of amplification products.

The key to qPCR is the real-time monitoring of the fluorescent signal, which
is proportional to the initial amount of the target DNA sequence. During the
amplification process, the increase in the fluorescent signal corresponds to each
cycle of DNA replication, allowing for quantitative analysis of the amplification
products. A fluorescent intensity signal is collected after each cycle, and the
change in product quantity is monitored by the change in fluorescent intensity,
finally resulting in a fluorescence amplification curve. The horizontal axis of the
amplification curve represents the number of cycles, and the vertical axis represents
the fluorescence intensity. Generally speaking, the fluorescence amplification curve
can be divided into three stages: the fluorescence background signal stage (baseline
period), the fluorescence signal exponential amplification stage, and the plateau

4.4 Key Technology in Biological Computing: Polymerase Chain Reaction 119

Fig. 4.21 qPCR
amplification curve

period (Fig. 4.21). The choice of fluorescent probes is crucial because they directly
affect the specificity and sensitivity of detection. Commonly used fluorescent probes
include TaqMan probes and SYBR Green dyes [73].

QPCR technology has a wide range of applications in biological and medical
research, especially in gene expression analysis, pathogen detection, and genetic
disease diagnosis. For example, in infectious disease research, qPCR is used to
quickly detect and quantify the DNA or RNA of pathogens, providing an efficient
diagnostic tool [74]. In addition, qPCR plays an important role in cancer research,
used to monitor the expression levels of cancer-related genes, which helps to
understand the pathogenesis of cancer and develop new treatment strategies [75].
In bio-computation, this technique is mainly used to monitor the amplification of
feasible solutions.

(2) Reverse Transcription PCR (RT-PCR)
Reverse Transcription PCR (RT-PCR) is a technique that combines reverse tran-
scription and Polymerase Chain Reaction (PCR) to amplify specific DNA sequences
from RNA samples. In RT-PCR, the RNA template is first transcribed into comple-
mentary DNA (cDNA) using reverse transcriptase, and then the cDNA is amplified
using standard PCR technology [76]. This process makes RT-PCR a powerful
tool for studying gene expression and viral load. Typically, RT-qPCR is divided
into one-step and two-step methods (Fig. 4.22). One-step RT-qPCR combines
reverse transcription with PCR amplification, allowing reverse transcriptase and
DNA polymerase to complete the reaction in the same tube under the same buffer
conditions. One-step RT-qPCR only requires the use of sequence-specific primers.
In two-step RT-qPCR, the reverse transcription and PCR amplification processes are
completed in two tubes, using different optimized buffers, reaction conditions, and
primer design strategies.

During the reverse transcription stage, the choice of RNA template is crucial as it
directly affects the quality of cDNA and the efficiency of subsequent amplification.
The type of reverse transcriptase and reaction conditions also affect the efficiency

120 4 Biological Computing Operators: Enzymes and Biochemical Operations

Fig. 4.22 Schematic diagram of “one-step” and “two-step” RT-PCR

and specificity of reverse transcription. Commonly used reverse transcriptases
include M-MLV reverse transcriptase and AMV reverse transcriptase [77].

RT-PCR has a wide range of applications in biomedical research, especially in
virology and cancer biology. For example, RT-PCR is used to quantify the RNA
levels of HIV and hepatitis B virus, thereby assessing the activity of viral replication
and treatment effects [78]. In cancer research, RT-PCR is used to detect and quantify
the expression of tumor markers, which helps in early diagnosis and treatment
monitoring of cancer [79].

(3) Digital PCR (dPCR)
Digital PCR (dPCR) is an advanced molecular biology technique used to precisely
quantify the absolute number of specific sequences in DNA samples. Unlike
traditional PCR and real-time quantitative PCR (qPCR), dPCR achieves detection
and counting of individual molecules by dividing the DNA sample into thousands
to tens of thousands of independent micro-reaction units [80]. In dPCR, each
micro-reaction unit contains zero or more DNA template molecules, and PCR
amplification is then carried out simultaneously in all units. The key to dPCR lies in
sample partitioning and data analysis. Sample partitioning creates a large number of
independent reaction units, each of which can be considered an independent PCR
reaction. This partitioning allows dPCR to reduce sample variability and improve
detection accuracy and repeatability. After amplification, the absolute number of
target sequences can be directly determined by counting the positive and negative
reaction units [81] (Fig. 4.23).

DPCR technology has a wide range of applications in biomedical research,
especially in the detection of low abundance target sequences, single nucleotide
variation (SNV) detection, and gene expression analysis in complex samples.
For example, dPCR is used in cancer research for the detection of circulating

4.4 Key Technology in Biological Computing: Polymerase Chain Reaction 121

Fig. 4.23 Basic principle of digital PCR

tumor DNA (ctDNA), providing a non-invasive method for cancer diagnosis and
monitoring [82]. In addition, dPCR has shown unique advantages in the diagnosis
and treatment monitoring of genetic diseases [83]. In recent years, the development
of dPCR technology has introduced new microfluidic chips and digital analysis
methods, making dPCR a high-throughput, high-sensitivity analytical tool. These
advances not only improve the convenience of dPCR operation, but also expand
its application range in clinical diagnosis and biological research [84]. In bio-
computation, this technology is mainly used to monitor the amplification and
resolution of feasible solutions.

(4) Multiplex PCR (Multiplex PCR)
Multiplex PCR is an efficient molecular biology technique that allows multiple
different DNA target sequences to be amplified simultaneously in a single reaction.
This technique, by using multiple pairs of specific primers, combines the ampli-
fication capability of traditional PCR, achieving parallel detection and analysis of
multiple gene sequences [85]. In multiplex PCR, each pair of primers specifically
binds to different target sequences, and all target sequences are amplified in the
same PCR reaction. The key to multiplex PCR technology lies in primer design and
optimization of reaction conditions. Primers must have high specificity and minimal
interaction to avoid non-specific amplification and primer dimerization. In addition,
PCR reaction conditions, such as annealing temperature and cycle number, need to
be precisely controlled to ensure effective amplification of all target sequences [86].

Multiplex PCR has a wide range of applications in clinical diagnosis, pathogen
detection, genetic disease screening, and forensic science. For example, in infectious
disease studies, multiplex PCR is used to simultaneously detect multiple pathogens,
thereby improving the efficiency and accuracy of diagnosis [87]. In genetic research,
multiplex PCR is used for rapid screening of multiple genetic markers, which helps
in early diagnosis and risk assessment of genetic diseases [88]. In recent years, the
development of multiplex PCR technology has introduced new detection platforms
and analysis methods, such as real-time quantitative PCR and high-throughput
sequencing, further improving its sensitivity and diversity. These advances not only
improve the convenience of multiplex PCR operation, but also expand its application
range in biomedical research and clinical applications [89].

122 4 Biological Computing Operators: Enzymes and Biochemical Operations

With the advancement of next-generation bio-computation technologies, the
concept of precise PCR has been proposed. This new concept technology overcomes
the inherent disadvantages of the original PCR technology (such as replication
errors) and is used for solution space resolution, making bio-computation a step
closer to practicality and larger scale.

Appendix

Examples of commonly used restriction endonuclease recognition sequences and
cutting points.

4.4 Key Technology in Biological Computing: Polymerase Chain Reaction 123

124 4 Biological Computing Operators: Enzymes and Biochemical Operations

References

1. Harvey, F.L.: Molecular Cell Biology. Macmillan (2008).
2. Tetsuya, S., Akira, S., Petr, G., et al.: Error-prone bypass patch by a low-fidelity variant of dna

polymerase zeta in human cells. DNA Repair 100(103052) (2021).
3. Alice, C., David, B.E., John, M.T.: Deoxyribonucleic acid polymerase from the extreme

thermophile thermus aquaticus. Journal of Bacteriology 127(3), 1550–1557 (1976).
4. Randall, K.S., David, H.G., Susanne, S., et al.: Primer-directed enzymatic amplification of dna

with a thermostable dna polymerase. Science 239(4839), 487–491 (1988).
5. Randall, K.S., Stephen, S., Fred, F., et al.: Enzymatic amplification of Beta-globin genomic

sequences and restriction site analysis for diagnosis of sickle cell anemia. Science 230(4732),
1350–1354 (1985).

6. Frances, Lawyer, Susanne S., et al.: High-level expression, purification, and enzymatic
characterization of full-length Thermus aquaticus DNA polymerase and a truncated form
deficient in 5’to 3’exonuclease activity. Genome Research 2(4), 275–287 (1993).

7. Kenneth, R.T., Thomas, A.K.: Fidelity of dna synthesis by the Thermus aquaticus DNA
polymerase. Biochemistry 27(16), 6008–6013 (1988).

8. Tamás, L., Huttová, J., Mistrk, I., et al.: Effect of carboxymethyl chitin-glucan on the activity
of some hydrolytic enzymes in maize plants. Chemical Papers 56(5), 326–329 (2002).

9. Allan, M.M., Walter, G.: [57] sequencing end-labeled DNA with base-specific chemical
cleavages. Methods in Enzymology 65(1), 499–560 (1980).

10. Ravinderjit, S.B., Nickolas, C., Cliff, J., et al.: Solution of a 20-variable 3-sat problem on a dna
computer. Science 296(5567), 499–502 (2002).

11. John, A.R.: The Fidelity of DNA Computation. The University of Memphis (1999).
12. Martyn A.: DNA computation. University of Warwick (1997).
13. Bin F.: Volume bounded molecular computation. Yale University (1997).
14. Tom, H., Grzegorz, R., Reno, S.B., et al.: Computing with DNA by operating on plasmids.

Biosystems 57(2), 87–93 (2000).
15. Stephen, P.A.F., Leighton, R., Michael, C.P., et al.: Light-directed, spatially addressable parallel

chemical synthesis. Science 251(4995), 767–773 (1991).
16. Editoral: To affinity . . . and beyond! Nature Genetics 14(4), 367–370 (1996).
17. Jing, C., Edward, L.S., Lei, W., et al.: Preparation and hybridization analysis of DNA/RNA

from E. coli on microfabricated bioelectronic chips. Nature Biotechnology 16(6), 541–546
(1998).

18. Devashish, R., Lina, A., Archana, R., et al.: The CRISPR-Cas immune system: biology,
mechanisms and applications. Biochimie 117, 119–128 (2015).

19. Francisco, J.M.M., Díez-Villaseñor, García-Martínez: Short motif sequences determine the
targets of the prokaryotic CRISPR defence system. Microbiology 155(3), 733–740 (2009).

20. Elitza, D., Krzysztof, C., Cynthia, M.S., et al.: CRISPR RNA maturation by trans-encoded
small RNA and host factor RNase III. Nature 471(7340), 602–607 (2011).

21. Samuel, S.H., Redding, S., Jinek, M., et al.: DNA interrogation by the CRISPR RNA-guided
endonuclease Cas9. Biophysical Journal 106(2), 695a (2014).

22. Alexis, C.K., Yongjoo, B.K., Michael, S.P., et al.: Programmable editing of a target base in
genomic DNA without double-stranded DNA cleavage. Nature 533(7603), 420–424 (2016).

23. Nicole, M.G., Alexis, C.K., Holly, A.R., et al.: Programmable base editing of a •. t to g •. c in
genomic DNA without DNA cleavage. Nature 551(7681), 464–471 (2017).

24. John, P.G., David, B.T, David, R.L.: Fusion of catalytically inactive Cas9 to Fokl nuclease
improves the specificity of genome modification. Nature Biotechnology 32(6), 577–582
(2014).

25. Bernd, Z., Jonathan, S.G., Omar, O.A., et al.: Cpf1 is a single RNA-guided endonuclease of a
class 2 CRISPR-Cas system. Cell 163(3), 759–771 (2015).

26. Janice, S.C., Enbo, M., Lucas, B.H., et al.: Crispr-Cas12a target binding unleashes indiscrimi-
nate single-stranded dnase activity. Science 360(6387), 436–439 (2018).

References 125

27. Shi-Yuan, L., Qiu-Xiang, C., Jia-Kun, L., et al.: CRISPR-Cas12a has both cis-and trans-
cleavage activities on single-stranded DNA. Cell Research 28(4), 491–493 (2018).

28. Xiaosa, L., Ying, W., Yajing, L., et al.: Base editing with a Cpf1-cytidine deaminase fusion.
Nature Biotechnology 36(4), 324–327 (2018).

29. Piro, S., John, Y., Timothy, K.L.: Synthetic circuits integrating logic and memory in living
cells. Nature Biotechnology 31(5), 448–452 (2013).

30. Lila, K.: Dna computing: arrival of biological mathematics. The Mathematical Intelligencer
19(2), 9–22 (1997).

31. Tabatabaei, Y., Yongbo, Y., Jian, M., et al.: A rewritable, random-access DNA-based storage
system. Scientific Reports 5(1), 1–10 (2015).

32. Takafumi, M., Shiva, R., Robert, D., et al.: Synthesizing biomolecule-based Boolean logic
gates. ACS Synthetic Biology 2(2), 72–82 (2013).

33. Yuchen, L., Yayue, Z., Li, L., et al.: Synthesizing AND gate genetic circuits based on CRISPR-
Cas9 for identification of bladder cancer cells. Nature Communications 5(1), 5393 (2014).

34. Shaohua, G., Xi, W., Ping, Z., et al.: AND logic-gate-based CRISPR/Cas12a biosensing
platform for the sensitive colorimetric detection of dual miRNAs. Analytical Chemistry 94(45),
15839–15846 (2022).

35. Erik, W., Furong, L., Lisa, A.W., et al.: Design and self-assembly of two-dimensional DNA
crystals. Nature 394(6693), 539–544 (1998).

36. Xiaoping, Y., Lisa, A.W., Jing, Q., et al.: Ligation of DNA triangles containing double
crossover molecules. Journal of the American Chemical Society 120(38), 9779–9786 (1998).

37. Chuan, Z., Yu, H., Yi, C., et al.: Aligning one-dimensional DNA duplexes into two-dimensional
crystals. Journal of the American Chemical Society 129(46), 14134–14135 (2007).

38. Stefan, W.H., Steffen, J.S., Mark, B., et al.: The 2015 super-resolution microscopy roadmap.
Journal of Physics D: Applied Physics 48(44), 443001 (2015).

39. Bo, H., Mark, B., Xiaowei, Z.: Super-resolution fluorescence microscopy. Annual Review of
Biochemistry 78(1), 993–1016 (2009).

40. Eric, B., George, H.P., Rachid, S., et al.: Imaging intracellular fluorescent proteins at nanometer
resolution. Science 313(5793), 1642–1645 (2006).

41. Samuel, T.H., Thanu, P.K.G., Michael, D.M.: Ultra-high resolution imaging by fluorescence
photoactivation localization microscopy. Biophysical Journal 91(11), 4258–4272 (2006).

42. Michael, J.R., Mark, B., Xiaowei, Z.: Sub-diffraction-limit imaging by stochastic optical
reconstruction microscopy (STORM). Nature Methods 3(10), 793–796 (2006).

43. Mike, H., Sebastian, V.D.L., Mark, S., et al.: Subdiffraction-resolution fluorescence imaging
with conventional fluorescent probes. Angewandte Chemie-International Edition 47(33),
(2008).

44. Alexey, S., Robin, M.H.: Wide-field subdiffraction imaging by accumulated binding of
diffusing probes. Proceedings of the National Academy of Sciences 103(50), 18911–18916
(2006).

45. Ralf, J., Maier, S.A., Johannes, B.W., et al.: Multiplexed 3D cellular super-resolution imaging
with DNA-PAINT and Exchange-PAINT. Nature Methods 11(3), 313–318 (2014).

46. Ralf, J., Maier, S.A., Mingjie, D., et al.: Quantitative super-resolution imaging with qPAINT.
Nature Methods 13(5), 439–442 (2016).

47. Hunter: Foundations of Colloid Science. Oxford University Press (1987).
48. Ferdinand, F.R.: Sur un nouvel effet de l’électricité galvanique. Mémoires de la Société

Impériale des Naturalistes de Moscou 2, 327–337 (1809).
49. Dorian, H., Marco, M., Paolo, V., et al.: Anodic aqueous electrophoretic deposition of titanium

dioxide using carboxylic acids as dispersing agents. Journal of the European Ceramic Society
31(6), 1041–1047 (2011).

50. Joseh, S., Russel: Molecular Cloning: A Laboratory Manual Cold Spring Harbor. Cold Spring
Harbor Laboratory Press (2001).

51. Ling, Cooksley, Bates, et al.: Antibodies to the glutamate dehydrogenase of Plasmodium
falciparum. Parasitology 92(2), 313–324 (1986).

52. Baker, D.R.: Capillary Electrophoresis. New York: Wiley (1995).

126 4 Biological Computing Operators: Enzymes and Biochemical Operations

53. James, W.J., Krynn, D.L.: Zone electrophoresis in open-tubular glass capillaries. Analytical
Chemistry 53(8), 1298–1302 (1981).

54. Norman, J.D., Jianzhong, Z.: How capillary electrophoresis sequenced the human genome.
Angewandte Chemie International Edition 39(24), 4463–4468 (2000).

55. Adam, T.W., Richard, A.M.: Ultra-high-speed dna sequencing using capillary electrophoresis
chips. Analytical Chemistry 67(20), 3676–3680 (1995).

56. Xiaoming, R., Amy, D.G., Carlowitz: Structural basis for il-1Alpha recognition by a modified
dna aptamer that specifically inhibits il-1Alpha signaling. Nature Communications 8(1), 810
(2017).

57. Chih-Ching, H., Zehui, C., Huan-Tsung, C., et al.: Protein- protein interaction studies based on
molecular aptamers by affinity capillary electrophoresis. Analytical Chemistry 76(23), 6973–
6981 (2004).

58. Pohl, H.A.: Dielectrophoresis: The Behavior of Neutral Matter in Nonuniform Electric Fields.
Cambridge University Press (1978).

59. Jones, T.B.: Electromechanics of Particles. Cambridge University Press (1995).
60. Hughes, M.P.: Nanoelectromechanics in Engineering and Biology. CRC Press (2002).
61. Jae-Woo, C., Allen, P., Demetri, P.: Optical detection of asymmetric bacteria utilizing electro

orientation. Optics Express 14(21), 9780–9785 (2006).
62. Sina, M., Fatima, H.L., Michael, P.H.: Effects of cell detachment methods on the dielectric

properties of adherent and suspension cells. Electrophoresis 36(13), 1493–1498 (2015).
63. Matthew, S.P., Yanting, Z., Nawarathna, K., et al.: Dielectrophoretic separation of platelets

from diluted whole blood in microfluidic channels. Electrophoresis 29(6), 1213–1218 (2008).
64. Herbert, A.P., Ira, H.: Separation of living and dead cells by dielectrophoresis. Science

152(3722), 647–649 (1966).
65. Mariano, D., Trapani, N., Gianni, M.: Deparray TM . system: an automatic image-based sorter

for isolation of pure circulating tumor cells. Cytometry Part A 93(12), 1260–1266 (2018).
66. Albert A.: Biochemical and biological applications of isotachophoresis. Elsevier Scientific

Publishing Company (1980).
67. Crevillén, A.G., Mercedes, F., Diez-Masa, J.C.: On-chip single column transient isota-

chophoresis with free zone electrophoresis for preconcentration and separation of Alpha-
lactalbumin and Beta-lactoglobulin. Microchemical Journal 133, 600–606 (2017).

68. Kary, B.M.: The unusual origin of the polymerase chain reaction. Scientific American 262(4),
56–65 (1990).

69. Mullis: Dancing Naked in the Mind Field. Vintage (2000).
70. Rutledge, R.G., Cote, C.: Mathematics of quantitative kinetic PCR and the application of

standard curves. Nucleic Acids Research 31(16), e93-e93 (2003).
71. Mary, H.: DNA amplification and detection made simple (relatively). PLoS Biology 4(7), e222

(2006).
72. Christian, A.H., Junko, S., Kenneth, J.L., et al.: Real time quantitative PCR. Genome Research

6(10), 986–994 (1996).
73. Ursula, E.G., Christian, A.H., Mickey, W.: A novel method for real time quantitative RT-PCR.

Genome Research 6(10), 995–1001 (1996).
74. Mackay: Real-time PCR in the microbiology laboratory. Clinical Microbiology and Infection

10(3), 190–212 (2004).
75. Bustin: Invited review quantification of mRNA using real-time reverse transcription PCR (RT-

PCR), trends and problems. Journal of Molecular Endocrinology 29, 23–39 (2002).
76. Stephen, A.B., Tania, N.: Pitfalls of quantitative real-time reverse-transcription polymerase

chain reaction. Journal of Biomolecular Techniques: JBT 15(3), 155 (2004).
77. Willard, M.F., Stephen, J.W., Kent, E.V.: Quantitative RT-PCR: pitfalls and potential. Biotech-

niques 26(1), 112–125 (1999).
78. Drosten: Detection of mycobacterium tuberculosis by real-time PCR: A comparative study of

is6110 and mpb64. Journal of Clinical Microbiology 41(6), 3043–3047 (2003).
79. Dennis, J.S., William, G., Lovell, A.J., John, et al.: Studies of the HER-2/neu proto-oncogene

in human breast and ovarian cancer. Science 244(4905), 707–712 (1989).

References 127

80. Bert, V., Kenneth, W.K.: Digital PCR. Proceedings of the National Academy of Sciences
96(16), 9236–9241 (1999).

81. Benjamin, J.H., Kevin, D.N., Donald, A.M., et al.: High-throughput droplet digital PCR system
for absolute quantitation of DNA copy number. Analytical Chemistry 83(22), 8604–8610
(2011).

82. Aaron, M.N., Scott, V.B., Jacqueline, T., et al.: An ultrasensitive method for quantitating
circulating tumor dna with broad patient coverage. Nature Medicine 20(5), 548–554 (2014).

83. Valérie, T., Deniz, P., Abdel, E.l.A., et al.: Detecting biomarkers with microdroplet technology.
Trends in Molecular Medicine 18(7), 405–416 (2012).

84. Elizabeth, D., Paul, H.D., Frank, M.: Digital PCR strategies in the development and analysis
of molecular biomarkers for personalized medicine. Methods 59(1), 101–107 (2013).

85. Henegariu, Heerema, Dlouhy, et al.: Multiplex PCR: critical parameters and step-by-step
protocol. Biotechniques 23(3), 504–511 (1997).

86. Mary, C.E., Richard, A.G.: Multiplex PCR: advantages, development, and applications.
Genome Research 3(4), S65-S75 (1994).

87. Elfath, M.E., Ahmed, M.A., Robert, J.C., et al.: Multiplex PCR: optimization and application
in diagnostic virology. Clinical Microbiology Reviews 13(4), 559–570 (2000).

88. C.M., Strom, I.M., Verma: Multiplex PCR for diagnosis of aids-related lymphomas. Methods
in Molecular Medicine 70, 77–87 (2002).

89. Schoske, Vallone, Ruitberg: High throughput multiplex PCR and amplicon quantitation for
human identity testing. Analytical Biochemistry 316(1), 1–9 (2003).

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Chapter 5
DNA Coding Theory and Algorithms

DNA computing is an emerging computational model that has garnered significant
attention due to its distinctive advantages at the molecular biological level. Since
it was introduced by Adelman in 1994, this field has made remarkable progress in
solving NP-complete problems, enhancing information security, encrypting images,
controlling diseases, and advancing nanotechnology. A key challenge in DNA
computing is the design of DNA coding, which aims to minimize nonspecific
hybridization and enhance computational reliability. The DNA coding design is a
classical combinatorial optimization problem focused on generating high-quality
DNA sequences that meet specific constraints, including distance, thermodynamics,
secondary structure, and sequence requirements. This chapter comprehensively
examines the advancements in DNA coding design, highlighting mathematical
models, counting theory, and commonly used DNA coding methods. These methods
include the template method, multi-objective evolutionary methods, and implicit
enumeration techniques.1

5.1 Introduction

In the age of big data, social development confronts unprecedented challenges,
one of the most significant being electronic computers’ limitations in addressing
NP-complete problems. As the scale of these problems grows, the computational
effort required expands exponentially, often exceeding the capabilities of traditional
computing models. This situation has created an urgent need to explore new
computational tools to overcome the “bottleneck” issues that impede societal
advancement. DNA computing, an emerging paradigm in computation, has demon-
strated remarkable potential, particularly in solving NP-complete problems, due

1 The content of this chapter is derived from the research paper [1].

© The Author(s) 2025
J. Xu, Biological Computing, https://doi.org/10.1007/978-981-96-3870-3_5

129

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-96-3870-3protect T1	extunderscore 5&domain=pdf
https://doi.org/10.1007/978-981-96-3870-3_5
https://doi.org/10.1007/978-981-96-3870-3_5
https://doi.org/10.1007/978-981-96-3870-3_5
https://doi.org/10.1007/978-981-96-3870-3_5
https://doi.org/10.1007/978-981-96-3870-3_5
https://doi.org/10.1007/978-981-96-3870-3_5
https://doi.org/10.1007/978-981-96-3870-3_5
https://doi.org/10.1007/978-981-96-3870-3_5
https://doi.org/10.1007/978-981-96-3870-3_5
https://doi.org/10.1007/978-981-96-3870-3_5
https://doi.org/10.1007/978-981-96-3870-3_5

130 5 DNA Coding Theory and Algorithms

to its high degree of parallelism. Since Adleman [2] first introduced the concept
of using DNA molecules to tackle the 7-vertex Hamiltonian path problem in
1994, DNA computing has evolved into a groundbreaking approach that utilizes
DNA molecules as information carriers, employing biochemical operations such
as enzymes and PCR as computational mechanisms. Since then, various DNA
computing models have been proposed and have successfully addressed numerous
NP-complete problems [3], including the SAT problem [4, 5], the traveling salesman
problem [6], and graph coloring problems [7]. Moreover, DNA computing models
have been applied to numerous other areas, such as data encryption [8] and logic
circuit constructions [9, 10].

Although DNA computing holds significant promise, its practical applications
still encounter several challenges. The biochemical processes on which DNA
computing relies are susceptible to errors. For example, PCR amplification has an
efficiency of around 90%, while enzyme efficiency ranges from 80% to 95%. These
errors can accumulate as the computational process iterates, affecting the results’
accuracy. Furthermore, the fundamental operation in DNA computing, hybridiza-
tion, can occur even when the DNA strands are not entirely complementary. This
non-specific hybridization can lead to undesirable secondary structures, which
deviate from the original design and potentially lead to incorrect computational
results. These challenges constrain the scale of problems that DNA computing can
tackle effectively. Currently, the largest successfully addressed problem by DNA
computing involves identifying a 3-coloring in a graph consisting of 61 vertices [7].

To effectively scale DNA computing for larger problems, designing high-quality
DNA codes presents a significant challenge [11]. DNA computing transforms
the problem to be solved into DNA sequences, with solutions represented by
DNA molecules formed through specific hybridization. However, low-quality DNA
sequences can result in non-specific hybridization, inconsistent melting temper-
atures, and even computational failures. Consequently, developing reliable DNA
sequences is essential for enhancing the efficiency of DNA computing. This not only
influences the accuracy and efficiency of computations but also critically affects
the scalability and reliability of DNA computing in practical applications. When
designing DNA codes, we must consider multiple factors, such as melting tem-
peratures (Tm), pairing specificity, stability, computational efficiency, and resource
consumption. Research in this field is vital for advancing DNA computing and
serves as a foundation for realizing its potential in tackling complex problems.

The DNA coding problem involves identifying large sets of single-stranded DNA
molecules that meet specific requirements. When designing DNA sequences of
length n., the solution space expands to 4n

., making the task of finding appropriate
DNA sequences particularly challenging. This problem is inherently a combinatorial
optimization problem and has been classified as NP-complete [12]. In the design
process, considering too few constraints may compromise the quality of the
designed DNA codes. Conversely, applying excessive constraints can significantly
restrict the feasible solution space and increase computational complexity, making
the problem even more difficult to solve. Moreover, optimizing DNA codes often
entails navigating multiple conflicting constraints, such as distance requirements

5.1 Introduction 131

and melting temperature. As a result, various optimization objectives must be
considered during the design process, adding further complexity to the task.
Achieving a balance among these constraints while identifying high-quality DNA
codes remains a considerable challenge.

5.1.1 An Overview of the Advancement in DNA Coding Design

Various optimization algorithms have been developed over the years to address the
challenges associated with DNA code design. In 1996, Deaton et al. [13] were
among the first to apply genetic algorithms (GA) to generate DNA sequences,
exploring the effects of temperature on DNA hybridization. Although this method
effectively produced valid DNA codes under fewer constraints, its performance
notably declined as the constraints increased [14, 15]. In 1997, Frutos et al. [16]
proposed a template-based coding method to minimize sequence similarity by
factoring in both Hamming and reverse-complement Hamming distances. This
methodology generated a set of DNA sequences through two binary coding sets
that met various constraints. Subsequent research further refined and extended its
properties and optimization techniques [17–19].

Search algorithms, such as exhaustive search and implicit enumeration, are vital
for DNA coding design. These algorithms systematically explore the potential solu-
tion space to identify optimal or near-optimal DNA sequences. While exhaustive
search ensures the generation of constraint-satisfying sequences, its computational
time is often lengthy, making it suitable mainly for small-scale problems [20].
Implicit enumeration has emerged as a widely used technique to overcome this
limitation, employing progressive edge extension searches to enhance the coding
process [21]. Given the vastness of the solution space, the random search method has
been introduced as an effective alternative to traditional exhaustive search [22]. This
method generates random DNA sequences and evaluates them against predefined
criteria. The random search algorithm can discover high-quality solutions by
exploring the solution space unbiasedly. However, it may struggle to converge
to the optimal solution efficiently. As a result, random search is often combined
with other methods, such as heuristic algorithms [23, 24]. A variety of heuristic
algorithms have been developed for the design of DNA codes. Notable methods
include simulated annealing [25], particle swarm optimization [26], and hybrid
optimization that combines genetic algorithms with simulated annealing [27]. Other
noteworthy approaches involve multi-objective chaotic evolutionary optimization
[28], local search techniques [29], and colony optimization [30]. Furthermore, DNA
coding research has utilized mathematical modeling and graph theory. For example,
Caserta et al. [31] utilized mathematical programming to create a heuristic algorithm
for generating DNA sequences. Similarly, Fouilhoux et al. [32] applied bipartite
graph partitioning to address challenges in DNA coding. Marco et al. [33] combined
mathematical programming with metaheuristic approaches to optimize the design of
DNA sequences.

132 5 DNA Coding Theory and Algorithms

Researchers have focused on enhancing and refining constraint conditions to
improve the quality of DNA codes. Garzon et al. [34] proposed the H-measure
constraint, which calculates the minimum Hamming distance between one sequence
and another by considering all possible shifts. Feldkamp et al. [35] introduced
a method for defining similarity that restricts the maximum length of common
subsequences between DNA sequences and includes a parameter to quantify inter-
sequence similarity. This approach limits identical or complementary subsequences
to a maximum length k .; however, determining an optimal value for k . remains
challenging. To address diverse application needs, more targeted constraints have
been developed, such as reverse-complement Hamming distance [26–28, 36], self-
complementary Hamming distance [21, 25], and 3’-end H-measure constraints
[25]. Additionally, secondary structure constraints and continuity constraints are
crucial for coding design [37, 38]. Penchovsky et al. [22] explored the hybridization
capabilities of DNA strands within hairpins, inner loops, and bulges, employing
thermodynamic data to assess duplex stability. They used dynamic programming
to create highly specific hybridizing DNA strands. Tanaka et al. [39] introduced a
greedy filtering algorithm to enhance the efficiency of free energy calculations in
thermodynamic-based methods, thus reducing design time. Together, these studies
propel DNA coding design toward greater efficiency, reliability, and precision.

Although significant advancements in DNA sequence design, various methods
often address distinct sets of constraints, many of which can conflict with one
another. Consequently, identifying DNA sequences that excel across multiple con-
straints remains a considerable challenge. Multi-objective optimization algorithms
present a robust approach to overcoming this issue. For instance, Shin et al. [40]
developed the NACST/Seq system, outperforming traditional genetic algorithms
and simulated annealing using constrained multi-objective optimization. Integrating
multi-objective optimization into DNA coding design has notably improved the
reliability of DNA sequences. In 2014, Chaves-González et al. [12] introduced MO-
FA, a firefly algorithm specifically tailored for multi-objective optimization, capable
of generating dependable sequences. In 2019, Chaves-González et al. [41] expanded
their efforts by formulating the DNA coding challenge as a constrained multi-
objective optimization problem consisting of four objectives and two constraints
and proposed the pMO-ABC algorithm based on multi-objective evolutionary
algorithms (MOEA), which yielded highly robust sequences. Recently, Xie et al.
[42] introduced an enhanced billiard arithmetic optimization algorithm (BHAOA)
for designing DNA codes, achieving sequences of high reliability. Similarly, Yang
et al. [43] proposed continuous base-pairing constraints and developed the H-ACO
algorithm, which demonstrated impressive performance in DNA sequence design,
validated through NUPACK. Despite these progressions, conflicts among multiple
constraints continue to pose significant challenges in DNA coding design. Future
research is expected to focus on balancing these competing objectives to improve
algorithm efficiency and code reliability further.

5.2 DNA Coding Problem 133

5.1.2 Organization

The remainder of this chapter is structured as follows. Section 5.2 discusses the
key factors that influence the design of DNA codes and establishes mathematical
models for the DNA coding problem, followed by a categorization of existing
DNA coding algorithms. Section 5.3 investigates the theory of coding counts
under the specified GC content condition, providing a systematic analysis of
its theoretical foundations. Subsequent sections introduce several common DNA
coding methods: Sect. 5.4 discusses template-based DNA coding methods, Sect. 5.5
focuses on multi-objective optimization coding methods, and Sect. 5.6 introduces
implicit enumeration algorithms.

5.2 DNA Coding Problem

In DNA computing, essential processes such as solution generation, extraction,
PCR amplification, and detection depend on DNA molecule hybridization. This
specific hybridization not only forms the foundation of DNA computing but also
plays a crucial role in determining the efficiency and accuracy of the computational
process. However, the inherent characteristics of DNA molecules may result in
hybridization errors, significantly affecting DNA computing processes’ reliability
and accuracy. Hybridization errors can be classified into false positives and false
negatives [44, 45]. A false positive occurs when incompletely complementary DNA
molecules erroneously hybridize, forming a double-stranded molecule. Figure 5.1
illustrates various DNA hybridization patterns. False positives generally arise from
a sufficient degree of reverse complementarity or similarity among DNA molecules.
In contrast, a false negative refers to the unsuccessful hybridization of completely
complementary DNA molecules, which prevents the formation of a double strand
with the intended target molecule. False negatives typically result from improper
reaction conditions or errors in biochemical procedures. A robust coding strategy
is vital to effectively reducing the incidence of false positives and false negatives.
Rational DNA sequences can ensure that the computational process (biochemical
reaction) closely adheres to a predefined model, thereby enhancing accuracy
and efficiency in DNA computing. Several factors influence the realization of
specific hybridization, including the distance between DNA sequences and various

Fig. 5.1 Four types of DNA hybridization patterns

134 5 DNA Coding Theory and Algorithms

biochemical constraints, such as similar thermodynamic properties, the avoidance
of secondary structure formation, and the presence of specific enzyme cleavage
sites. Collectively, these factors contribute to the reliability and efficiency of the
biochemical reaction system. A more detailed examination of these constraints is
provided below.

In the subsequent discussion, let S(n). denote the set of all single-stranded DNA
sequences of length n, where n. is a positive integer. For any sequence x ∈ S(n).,
we define xr

. and xc
. to represent the reverse and complement sequences of x,

respectively. Specifically, if the sequence is expressed as x = 5’-x1x2 . . . xn-3’.
(with xi ∈ {A,G,C,T}. for i = 1, 2, . . . , n.), then its reverse sequence xr

. is given
by xr = 3’-xnxn−1 . . . x1-5’., and its complementary sequence xc

. is defined as
xc = 3’-xc

1x
c
2 · · · xc

n-5’., where each base xi . and its complementary sequence xc
i . (for

i = 1, 2, . . . , n.) conform to the Watson-Crick (WC) base pairing rules, which are
as follows: if xi = A., then xc

i = T.; if xi = T., then xc
i = A.; if xi = C., then xc

i = G.;
and if xi = G., then xc

i = C.. Additionally, we define xrc = (xr)c . and xcr = (xc)r ..
Notably, it holds that xrc = xcr

.x. We refer to xrc
. as the reverse-complementary

sequence of x.

5.2.1 Constraints in DNA Coding Design

DNA coding design involves several important constraints that must be carefully
considered to achieve successful results. The primary factors include distance con-
straints, thermodynamic constraints, secondary structure constraints, and sequence
constraints. Each of these elements is crucial for ensuring the reliability and
functionality of the designed DNA sequences.

5.2.1.1 Distance Constraints

DNA sequence specificity is essential for accurate information representation and
effective computation. Distance constraints are the principal means of maintaining
the integrity of the sequence specificity of DNA interactions. The differences
between DNA sequences are primarily evaluated using Hamming distance. Coding
constraints based on Hamming distance can prevent nonspecific hybridization
between DNA sequences, ensuring that each DNA strand pairs exclusively with
its complementary counterpart to form a stable double helix structure. The most
commonly employed distance constraints include the following seven types. Let
x = 5’-x1x2 · · · xn-3’. and y = 5’-y1y2 · · · yn-3’. denote two single-strand DNA
sequences of length n, where xi, yi ∈ {A, G, C, T}. represent the respective
nucleotide bases.

(1) Hamming Distance [14] The Hamming distance between two DNA sequences,
x . and y ., is the count of positions where the corresponding bases differ. In DNA

5.2 DNA Coding Problem 135

coding design, this distance is a crucial measure of dissimilarity between sequences.
A larger Hamming distance between x . and y . signifies a greater number of differing
positions, thereby decreasing the likelihood of specific hybridization between x .

and y.s . complementary sequence yc ., as well as between y . and x.s . complementary
sequence xc .. The Hamming distance between the sequences x . and y . is formally
defined as follows:

.H(x, y) =
n7

i=1

h(xi, yi), (5.1)

where h(xi, yi) = 0. if xi = yi . and h(xi, yi) = 1. if xi '= yi ..

(2) H-measure [34] The H-measure addresses the potential for shift hybridizations
between DNA molecules by restricting the degree of complementary base pairing
between two DNA sequences. The H-measure of two DNA sequences x and y,
denoted by H -measure(x, y)., is defined as the smallest shifted Hamming distance
between x and the reverse complementary sequence yrc

. of y. The calculation of the
H-measure is expressed using the following formula:

.H -measure(x, y) = min−n<k<n
H(x, σ k(yrc)) (5.2)

where the expression σk(yrc). refers to the DNA sequence obtained by shifting
yrc

. to the right by k positions. The H-measure offers a more precise evaluation
of dissimilarity between two sequences. A smaller value of H -measure(x, y).

indicates a greater similarity between x and yrc
., signifying an increased likelihood

of shifting hybridizations between x and y. In contrast, a larger value suggests a
decreased probability of such hybridizations occurring. Given the complexity of
DNA hybridization, the shifting distance provides a straightforward computational
metric for assessing differences between sequences.

In optimization-driven coding methodologies, the H-measure evaluation function
is framed as a minimization problem [25]. Given a set S . consisting of m. DNA
sequences, each of length n., the H-measure for an individual sequence x ∈ S . is
defined in a specific manner.

.H -measure (x) = max
y∈S,y '=x

max−n<k<n

l
n − H(x, σ k(yrc))

l
(5.3)

To further enhance the accuracy of hybridization assessments between DNA
sequences, Shin et al. [40] introduced a gapped version of the H-measure evaluation
function (Eq. 5.3). Specifically, for a sequence x in S, this function is defined as
follows:

.H -measure (x) =
7

y∈S, y '=x

max
0≤g≤n

max
0≤k≤n+g−1

C(x(_)gx, σ k(yr)) (5.4)

136 5 DNA Coding Theory and Algorithms

In Eq. 5.4, (_)g . represents the insertion of g . gaps into the sequence x .. The
function C(x(_)gx, σ k(yr)). determines the number of complementary base pairs
between x(_)gx . and σk(yr).. Furthermore, incorporating penalties for continuous
complementary regions can significantly improve the effectiveness of the H-
measure constraint [12]. A higher H -measure(x). value indicates an increased
likelihood of hybridization between the sequence x .and sequences in S\{x}., whereas
a lower value suggests a reduced likelihood of hybridization.

(3) Similarity [16] The similarity constraint is utilized to evaluate the degree of
similarity of a sequence with other sequences based on their base composition. DNA
sequences satisfying this constraint are designed to ensure that their subsequences
remain as unique as possible in the same direction, while also avoiding any
repetition during shifting conditions. For a set S . consisting of m. DNA sequences,
each of length n., the similarity evaluation function for a DNA sequence x ∈ S . is
defined as follows:

.Similarity(x) = max
y∈S, y '=x

max−n<k<n

l
n − H(x, σ k(y))

l
(5.5)

Again, Shin et al. [40] introduced a gapped similarity evaluation function, which
is defined as follows:

.Similarity(x) =
7

y∈S,y '=x

max
0≤g≤n

max
0≤k≤n+g−1

E(x(_)gx, σ k(y)) (5.6)

where the function E(x(_)gx, σ k(y)). quantifies the number of identical bases
between x(_)gx . and σk(y).. Additionally, the effectiveness of the similarity con-
straint can be significantly improved by introducing penalties for consecutive
identical bases [12].

(4) Reverse-Complementary Hamming Distance [17] Sequence x . has the poten-
tial to hybridize with the reverse sequence y .. The reverse-complementary Hamming
distance, represented asHrc(x, y)., quantifies the degree of similarity between x . and
the reverse-complementary sequence of y ., which is defined as

.Hrc(x, y) = H(x, yrc) (5.7)

(5) Self-complementary Hamming Distance [25] To prevent a DNA molecule
from hybridizing with its reverse sequence, the concept of self-complementary
Hamming distance is introduced, represented as Hs(x).. This concept is defined as
the minimum shifted Hamming distance between the sequence x and its reverse-
complementary sequence, that is,

.Hs(x) = min−n<k<n
H(x, σ k(xrc)) (5.8)

5.2 DNA Coding Problem 137

(6) Completely Complementary at 3’-end [25] If the 3’ end of a DNA sequence
is complementary to a portion of another sequence, erroneous amplification may
occur during PCR. This issue can be avoided using the constraint of completely
complementary at 3’-end. This evaluation function between sequences x and y is
denoted as H-measure_end(x, y)., and is defined as follows:

.H-measure_end(x, y) = CN(x, y(k)) (5.9)

where CN(x, y(k)).denotes the number of completely complementary sites between
sequence x and the k-base sequence derived from the 3’ end of sequence y. The
parameter k is predetermined.

(7) Overlapping Subsequences [46] This constraint requires that no two subse-
quences of length m may be identical, thereby preventing the occurrence of long,
continuous identical subsequences within DNA sequences. As a result, this measure
significantly reduces the overall similarity between the sequences.

In addition to the previously discussed constraints, there are some straightfor-
ward extensions of the Hamming distance. For example, the reverse Hamming
distance, denoted as Hr(x, y)., is defined as the Hamming distance between
sequence x and the reverse of sequence y, i.e., Hr(x, y) = H(x, yr).. Likewise,
the complement Hamming distance, represented as Hc(x, y)., is defined as the
Hamming distance between sequence x and the complement of sequence y, i.e.,
Hc(x, y) = H(x, yc)..

5.2.1.2 Thermodynamic Constraints

In contrast to traditional coding methods that depend on Hamming distance
constraints, thermodynamic constraints provide a more accurate evaluation of the
stability and specificity of DNA sequences. This approach involves quantifying both
the melting temperature and the free energy changes of DNA strands, effectively
preventing non-specific hybridization. By integrating thermodynamic constraints,
we can comprehensively analyze the interactions between sequences and their
behavior under specific environmental conditions, offering enhanced scientific and
practical guidance for DNA sequence design.

(1) Melting Temperature [25] A vital biochemical process in DNA computing is
the denaturation of double-stranded DNA molecules. Due to the large number of
DNA molecules involved in biochemical reactions and the necessity of denaturing
all target DNA molecules within a brief period, it is essential for the DNA molecules
designated as “data” to have similar melting temperatures. The melting temperature
(Tm .) of a single-stranded DNA sequence x . is defined as the temperature at which
50% of the base pairs in the DNA molecule formed by x . and its complementary
strand become denatured. This parameter plays a critical role in evaluating the
thermodynamic stability of DNA molecules.

138 5 DNA Coding Theory and Algorithms

The (Tm .) value of a DNA molecule is determined by various factors, including its
concentration, solution pH value, molecular size, GC content, and the arrangement
of its base sequence. Theoretically, the melting temperature can be calculated using
a formula that is grounded in thermodynamic principles [47].

.Tm = ΔH ◦

ΔS◦ + R lnCt

(5.10)

where ΔH ◦
. and ΔS◦

. denote the changes in enthalpy and entropy that occur
during the hybridization reaction. The gas constant R . is valued at 1.987 cal/K ·.mol.
Additionally, Ct . represents the molar concentration of the DNAmolecule, with sym-
metric sequences expressed as Ct/4.. Generally, a greater degree of hybridization
pairing between DNA sequences corresponds to a more stable double-helix structure
and, as a result, a higher melting temperature.

For a DNA sequence of length n., denoted as x1x2 . . . xn ., the free energy and
entropy changes ΔH ◦

. and ΔS◦
. can be approximated using the following formula:

.ΔX = θ +
n−17

i=1

w(xi, xi+1) (5.11)

where θ . is a correction factor, and w(xi, xi+1). represents the negative enthalpy or
entropy weight for a 2-bp base pair xixi+1 . (as listed in Table 5.1).

(2) Free Energy [19] The free energy change (ΔG.) reflects the energy variation
that occurs when two single-stranded DNA molecules hybridize to form a double-
stranded DNA structure. Since DNA hybridization generally releases heat, ΔG.

is typically negative (ΔG < 0.). The magnitude of ΔG. serves as an essential

Table 5.1 Nearest-neighbor thermodynamic parameters for Watson-Crick base pairs [48]

Base pair sequence 5’ →.3’/3’ →.5’ ΔH ◦ . (kcal/mol) ΔS◦ . (e.u.) ΔG◦ . (kcal/mol)

AA/TT −7.6 −21.3 −1.00

AT/TA −7.2 −20.4 −0.88

TA/AT −7.2 −21.3 −0.58

CA/GT −8.5 −22.7 −1.45

GT/CA −8.4 −22.4 −1.44

CT/GA −7.8 −21.0 −1.28

GA/CT −8.2 −22.2 −1.30

CG/GC −10.6 −27.2 −2.17

GC/CG −9.8 −24.4 −2.24

GG/CC −8.0 −19.9 −1.84

Initiation +0.2 −5.7 +1.96

Terminal AT Penalty +2.2 +6.9 +0.05

Symmetry Correction 0.0 −1.4 +0.43

5.2 DNA Coding Problem 139

indicator for assessing the stability of the double-stranded DNA; the greater the
absolute value of ΔG., the more stable the resulting structure is. To prevent non-
specific hybridization between DNA sequences, a minimum free energy constraint
is imposed on the DNA set C .. Specifically, a threshold for the minimum free energy
change, ΔGmin ., is established, requiring that the ΔG. for non-specific hybridization
between any two DNA molecules in C . exceeds ΔGmin .. This approach ensures
that stable double-strand structures cannot form, thereby effectively avoiding non-
specific hybridization.

The free energy is calculated using the Nearest-Neighbor thermodynamic model
[47], and the formula is as follows:

.ΔG =
7

i

niΔG(i) + ΔGini GC + ΔGini AT + ΔGsym (5.12)

where ΔG(i). represents the free energy associated with a neighboring base pair. For
instance, ΔG(1). corresponds to ΔG(AA/TT)., ΔG(2). corresponds to ΔG(TA/AT).,
and this continues for a total of 10 possible Watson-Crick nearest-neighbor base pair
combinations. The variable ni . denotes the frequency of each ΔG(i).. Furthermore,
ΔGini GC . and ΔGini AT . are correction terms used for starting positions containing
GC or AT pairs, respectively. Lastly, ΔGsym . serves as the correction term for self-
complementary DNA sequences.

5.2.1.3 Secondary Structure Constraints [27]

Single-stranded DNA molecules have the potential to spontaneously fold into
intricate secondary structures, such as hairpin loops, because of the presence of
reverse complementary subsequences. These secondary structures can disrupt DNA
computation during synthesis, sequencing, and solution detection. Consequently,
DNA coding design generally strives to prevent the formation of secondary struc-
tures during both the coding phase and solution generation. For a DNA sequence x .

with a length of l., the computation of its hairpin structure is defined as follows:

. Hairpin(x) =
l(l−Rmin)/2l7

p=Pmin

l−2p7

r=Rmin

l−2p−r7

i=1

T

⎛

⎝
p7

j=1

bp(xp+i−j , xp+i+r+j),
p

2

⎞

⎠

(5.13)

In Eq. 5.13, p denotes the stem length of the hairpin, which is defined as

. p = pinlen(p, r, i) = min(p + i, l − r − i − p),

where Pmin . is the minimum stem length, r is the loop length of the hairpin, and
Rmin . is the minimum loop length. The function T (a, Tvalue). is a threshold function

140 5 DNA Coding Theory and Algorithms

that returns a . if a . exceeds Tvalue .; otherwise, it produces a result of 0.. In addition,
the function bp(b, b.). evaluates whether the bases b. and b.

. are complementary. If
the bases are found to be complementary, the function returns 1.; if they are not, it
returns 0..

5.2.1.4 Sequence Constraints

In DNA computing, sequence constraints are crucial for ensuring sequence speci-
ficity and the reliability of experiments. These constraints can be categorized into
several types:

(1) GC Content [49] In double-stranded DNA, adenine (A) pairs with thymine
(T) via two hydrogen bonds, while guanine (G) pairs with cytosine (C) through
three hydrogen bonds. Consequently, GC content is a critical factor influencing
the melting temperature (Tm .) and free energy change (ΔG.). By adjusting the GC
content, it is possible to keep the melting temperature and free energy change within
a narrow range. Typically, a GC content of approximately 50% is recommended for
the design of PCR primers and for DNA computing coding design.

(2) Continuity [25] The consecutive occurrence of identical nucleotide bases
within a DNA sequence can lead to the formation of undesirable secondary struc-
tures, primarily due to hydrogen bonding interactions among the bases. Therefore,
to maintain the stability of the sequence and preserve the integrity of experimental
results, it is a standard practice in sequence design to restrict the length of
consecutive identical bases. Specifically, for a sequence x of length l., the calculation
for its continuity is defined as follows:

.Continuity(x) =
l−t+17

i=1

7

α∈{A, T, G, C}

l
T

l
Cα(x, i), t

ll2 (5.14)

where the function Cα(x, i). returns a value c. if there exists an integer c such that
xi '= α ., xi+j = α . (for 1 ≤ j ≤ c.), and xi+c+1 '= α .. Otherwise, it returns 0. Here,
xi . represents the i-th base of the sequence x.

(3) Base [50] Base constraints involve deliberately limiting the use of specific DNA
bases within a sequence to fulfill experimental requirements or to optimize perfor-
mance. For example, certain experiments may need specific bases to be retained for
designated functions, while others might restrict certain bases to minimize potential
interference. Research has shown that utilizing only A, T, and C while excluding
G can significantly decrease hybridization and the stability of secondary structures
[4, 51, 52]. Though this approach leads to reduced sequence diversity, it ultimately
enhances the specificity of DNA libraries and the experiments’ reliability.

(4) Special Subsequence [16] Enzymes are biological molecules with specific
functions, primarily proteins, that play crucial roles in DNA manipulation. For

5.2 DNA Coding Problem 141

example, ligases connect DNA strands, while restriction endonucleases can cleave
DNA at specific locations. These enzymes greatly enhance the tools available
for DNA computing, allowing for greater flexibility in algorithm design and
improving both the computational processes and solution detection. It’s important to
recognize that these enzymes are programmed to identify specific base sequences.
Consequently, when designing DNA sequences, avoiding these particular functional
subsequences is essential to prevent errors in biological experiments. Additionally,
certain sequences, such as codons, must be excluded to avoid inadvertently trig-
gering unwanted molecular reactions under specific experimental conditions. By
carefully excluding these sequences, researchers can minimize experimental risks
and significantly enhance the reliability and success rate.

5.2.2 DNA Coding Problem and Its Mathematical Model

The DNA coding problem encompasses three primary factors: coding quantity,
length, and quality. Various constraints influence the quality of coding, including
distance, thermodynamics, secondary structure, and sequence constraints. The
stricter these constraints are, the higher the quality of the coding, resulting in
greater reliability and stability in the biochemical reactions during the computation
process. Under the specified constraints, longer coding lengths lead to more coding
possibilities; however, this also increases synthesis costs and complicates the control
of long DNA chains in experimental settings. Conversely, shorter coding lengths
provide fewer coding possibilities, lower synthesis costs, and simpler experimental
control. Let x = 5’-x1x2 . . . xn-3’. represent a single-stranded DNA sequence of
length n., where xi ∈ {A, G, C, T}. signifies the nucleotide bases. Define S(n). as the
set of all single-stranded DNA sequences of length n.; therefore, the size of S(n).

is represented by |S(n)| = 4n
.. The aim of DNA coding design is to identify a

subset S ⊆ S(n). such that the DNA sequences in S . conform to various specified
constraints.

Given the interdependence among coding quantity, length, and quality, the DNA
coding problem is characterized as a multi-constrained optimization challenge.
Below, two equivalent definitions of the DNA coding problem are presented: the
minimum coding length problem and the maximum coding set problem.

Definition 5.1 (Minimum Coding Length Problem) Given a set of constraint
criteria C = {f1, f2, . . . , fl}. and a specified coding quantity N ., the objective of the
minimum coding length problem is to identify the smallest positive integer n. such
that the set S(n). contains a subset S ⊆ S(n). that meets the following requirements:
|S| ≥ N .; and for every DNA sequence s . in S ., each condition fi(s).must hold for all
constraints Ci .where i = 1, 2, . . . , l..

Definition 5.2 (Maximum Coding Set Problem) Given a set of constraint criteria
C = {f1, f2, . . . , fl}. and a coding length n., the goal of the maximum coding set

142 5 DNA Coding Theory and Algorithms

problem is to identify the largest subset S ⊆ S(n). such that for every DNA sequence
s . in S ., the condition fi(s). is satisfied for each constraint Ci .where i = 1, 2, . . . , l..

These two definitions are fundamentally equivalent. Definition 5.1 is concerned
with identifying the smallest sequence length n. such that the solution space of
4n

. includes at least N . sequences that comply with the given constraints. In
contrast, Definition 5.2 focuses on selecting the maximum subset of sequences
of length n. that meet these constraints within the 4n

. solution space. In practical
applications, constraints are typically developed based on specific needs, and due to
the limitations of biochemical operations, coding lengths are generally restricted to
fewer than 50 bases. Consequently, algorithm design often prioritizes Definition 5.2,
which aims to identify the largest possible coding set for a specified coding length.
Below, we provide an example of the maximum coding set problem based on
Definition 5.2, utilizing the constraint criteria outlined in Sect. 5.2.1.

The set of constraint criteria C = {f1, f2, f3, f4}. is defined as follows:
• Distance constraint (f1 .): For any two encoded DNA sequences si . and sj ., the

distance measure must satisfy the condition f1(si, sj) ≥ dmin ., where dmin . is the
minimum allowable distance between the sequences.

• Thermodynamic constraint (f2 .): For each encoded DNA sequence si ., the melting
temperature (Tm .) must lie within the predefined thresholds: Tmin ≤ f2(si) ≤
Tmax ., where Tmin . and Tmax . represent the minimum and maximum melting
temperature limits, respectively.

• Secondary structure constraint (f3 .): No encoded DNA sequence si . should form
secondary structures, which is indicated by the criterion f3(si) = 0..

• Special subsequence constraint (f4 .): No encoded DNA sequence si .may contain
specific unwanted subsequences, represented by the condition f4(si) = 0..

For a given coding length n., the maximum coding set problem can be formulated
based on these constraints as follows:

.

argmaxS⊆Sn
|S|

s.t.

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

f1(si, sj) ≥ dmin,∀si , sj ∈ S

Tmin ≤ f2(si) ≤ Tmax,∀si ∈ S

f3(si) = 0,∀si ∈ S

f4(si) = 0,∀si ∈ S

(5.15)

5.2.3 Classification of DNA Coding Algorithms

Early research on DNA coding algorithms primarily conceptualized the DNA
coding problem as a threshold-based task, which involved assessing whether
specific properties of each sequence pair exceeded a predefined threshold. A
range of techniques were employed in this context, including exhaustive search,

5.3 Counting DNA Coding Sequences Based on GC Content 143

random search, dynamic programming, template mapping, graph theory methods,
and statistical approaches. With advancements in the field, the DNA coding
problem began to be viewed more as an optimization challenge. Consequently,
heuristic algorithms emerged as essential tools for tackling this complex issue.
Notably, swarm intelligence optimization algorithms and evolutionary algorithms,
particularly multi-objective evolutionary optimization algorithms, have proven to be
particularly effective in developing DNA sequences.

To thoroughly analyze the constraints utilized in contemporary DNA coding
algorithms, we systematically summarize these constraints, highlighting their sim-
ilarities and differences. Table 5.2 presents this summary, listing 14 common
constraints that encompass various aspects, including (1) similarity, (2) H-measure,
(3) complement Hamming distance, (4) self-complement Hamming distance, (5)
completely complementary at 3’-end, (6) minimum substring, (7) Hamming dis-
tance, (8) free energy, (9) melting constraint, (10) Hairpin and other complex
structures, (11) GC content, (12) continuity, (13) Base, and (14) special subse-
quence. These constraints are essential for DNA coding design, as they ensure that
the constructed DNA sequences can stably and effectively carry out computational
tasks during experimental processes while reducing the risk of interference and
instability.

It is essential to recognize that the application of various constraint conditions
in coding design not only emphasizes the focus of different methods on the
properties of DNA sequences but also reflects distinct optimization objectives in
practical applications. For example, the self-complementary Hamming distance
constraint is primarily employed to mitigate self-pairing issues in sequences. In
contrast, constraints related to GC content and melting temperature are directly
linked to the physical stability of the DNA sequence. As a result, the selection of
suitable constraint conditions often relies on specific application requirements and
experimental settings. This variability also accounts for the diversity in effectiveness
and efficiency observed in current DNA coding methods.

5.3 Counting DNA Coding Sequences Based on GC Content

The melting temperature of double-stranded DNA molecules is positively correlated
with their GC content. Consequently, targeting a GC content of approximately 50%
is advisable when designing DNA coding. This section provides some theoretical
results on counting DNA coding sequences based on their GC content and intro-
duces an algorithm for constructing DNA sequences with identical GC content.

144 5 DNA Coding Theory and Algorithms

Table 5.2 Current DNA coding algorithm classification, where DC denotes Distance Constraint,
TC denotes Thermodynamic Constraint, SSC denotes Secondary Structural Constraint, SC
denotes Sequence Constraint, SS denotes Search Strategy, TM denotes Template Mapping,
GTM denotes Graph Theory Method, SM denotes Statistical Method, EA denotes Evolutionary
Algorithm, MOA denotes Multi-Objective Optimization Algorithm, and SIA denotes Swarm
Intelligence Algorithm

5.3.1 Counting Theory for Designing DNA Sequences

For two single-stranded DNA sequences x, y ∈ S(n)., the hybridization distance
between them, denoted as l(x, y)., refers to the number of Watson-Crick (WC)
complementary base pairs between corresponding positions of x . and y .. It is

5.3 Counting DNA Coding Sequences Based on GC Content 145

mathematically expressed as:

.l(x, y) =
n7

i=1

l(xi, yi) (5.16)

where

.l(xi, yi) =
l
1 if xi and yi are WC complementary,

0 otherwise.
(5.17)

Next, we refine the set S(n).: For positive integers m, λ,μ, r . that are not exceed
n, we define S(n,m) ⊂ S(n). as the set of all DNA sequences of length n.whose GC
content (the number of bases G or C) is exactly m.. Similarly, S(n,m, λ) ⊆ S(n,m).

represents the set of sequences in S(n,m). such that the hybridization distance
between any two sequences x . and y . satisfies the following four conditions:

We will now refine the set S(n).. For positive integers m, λ,μ, r . that do not
exceed n., we define the subset S(n,m) ⊂ S(n). as the collection of all DNA
sequences of length n. with a GC content of exactly m. bases, where the bases are
either G or C. In a similar manner, we define S(n,m, λ) ⊆ S(n,m). as the subset of
sequences within S(n,m). that adhere to specific criteria: the hybridization distance
between any two sequences x . and y .must satisfy the following four conditions:

.

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

l(x, y) ≤ λ

l(x, yr) ≤ λ

l(x, yc) ≤ λ

l(x, yrc) ≤ λ

(5.18)

where yr
., yc

. and yrc
. are the reverse, complementary and reverse-complementary

sequences of y ., respectively.
Furthermore, S(n,m, λ, μ) ⊆ S(n,m, λ). denotes the set of sequences in

S(n,m, λ). for which the length of the longest common subsequence between any
two sequences x . and y . is less than or equal to μ.. Additionally, S(n,m, λ, μ, r) ⊆
S(n,m, λ, μ). refers to the set of sequences in S(n,m, λ, μ). where the number of
consecutive identical bases in each sequence does not exceed r ..

In DNA computing and other DNA hybridization reactions, the required number
of DNA sequences, denoted as N ., is usually predetermined. Consequently, it is
crucial to design at least N . sequences that adhere to various constraints while
minimizing their lengths. However, accurately calculating the number of single-
stranded DNA sequences of minimum length that fulfill these constraints presents a
significant challenge. We refer to this issue as the DNA coding counting problem. In
the following, we focus on studying the set S(n,m)., providing its counting formula,
and exploring the relationship between |S(n,m)|. and |S(n)|..

146 5 DNA Coding Theory and Algorithms

Theorem 5.1 For any positive integers n. and m., where 1 ≤ m ≤ n., we have

.|S(n,m)| =
ll

n

m

l
× 2n = n!

m!(n − m)! × 2n (5.19)

Proof To calculate the total number of DNA sequences of length n. that contain
exactly m. G and C bases (i.e., a GC content of m.), we can follow a structured
approach:

First, we select m. positions from a total of n. available positions. The number of
ways to make this selection is represented by the binomial coefficient:

.

ll
n

m

l
= n!

m!(n − m)! (5.20)

Next, for each arrangement of length m. consisting exclusively of G and C bases,
there are 2m

. possible combinations of these bases.
Finally, for each configuration of G and C bases, there are 2n−m

. possible
sequences for the remaining n − m. positions, which can be filled with any of the
two DNA bases A or T.

By combining these elements, we arrive at the total number of DNA sequences
of length n. that contain exactly m.G and C bases.

.

ll
n

m

l
× 2m × 2n−m = n!

m!(n − m)! × 2m × 2n−m = n!
m!(n − m)! × 2n (5.21)

The conclusion presented below follows from Theorem 5.1.

Corollary 5.1 The total number of DNA sequences of length n. that exhibit a GC
content of ln

2 l. is determined by the following expression:

.|S(n, ln

2
l)| = n!

ln−1
2 l! × ln+1

2 l! × 2n (5.22)

Corollary 5.1 provides the formula for calculating the number of DNA sequences
with a GC content close to 50% of the sequence length. For example, the total
number of DNA sequences with length n = 8. and GC content of 4 is:

. |S(8, 4)| = 8!
4! × 4! × 28 = 70 × 28 = 17920.

Similarly, for DNA sequences of length n = 9. with a GC content of 4, the total
number is:

.|S(9, 4)| = 9!
4! × 5! × 29 = 252 × 29 = 64512.

5.3 Counting DNA Coding Sequences Based on GC Content 147

The following lemma demonstrates that, with an increase in sequence length, the
number of DNA sequences with GC content close to 50% diminishes significantly
when compared to the total number of DNA sequences of equivalent length.

Lemma 5.1 For the set S(n, ln/2l). of DNA sequences of length n.with GC content
of ln/2l., the following holds:

. lim
n→+∞

|S(n, ln/2l)|
|S(n)| = 0 (5.23)

Proof According to Corollary 5.1, we have

.
|S(n, ln/2l)|

|S(n)| = n!
2n × l(n − 1)/2l! × l(n + 1)/2l!

In the following, we prove that

. lim
n→+∞

n!
2n × l(n − 1)/2l! × l(n + 1)/2l! = 0

Since

.
n!

2n ×
l

n−1
2

l
! ×

l
n+1
2

l
!

= n!
2

l
n−1
2

l

× ln−1
2 l! × 2

l
n+1
2

l

× ln+1
2 l!

= n!
(2 × 4 × 6 × · · · × 2

l
n−1
2

l
) × (2 × 4 × 6 × · · · × (2

l
n+1
2

l
− 2) × 2

l
n+1
2

l
)

=
1 × 3 × 5 × · · · × (2

l
n−1
2

l
− 1) × (2

l
n−1
2

l
+ 1)

2 × 4 × 6 × · · · × (2
l

n+1
2

l
− 2) × 2

l
n+1
2

l

=

√
1 × 3 × √

3 × 5 × √
5 × 7 × · · ·

×
l

(2
l

n−1
2

l
− 1)(2

l
n−1
2

l
+ 1) ×

ll
2
l

n−1
2

l
+ 1

l

2 × 4 × 6 × · · · × (2
l

n+1
2

l
− 2) × 2

l
n+1
2

l

148 5 DNA Coding Theory and Algorithms

For any non-negative real numbers a . and b., it holds that
√

ab ≤ a+b
2 . by the

relationship between the geometric mean and the arithmetic mean. This inequality
leads to the following results.

.
√
1 × 3 ≤ 2,

.
√
3 × 5 ≤ 4,

.
√
5 × 7 ≤ 6,

.

...

.
l

(2l(n − 1)/2l − 1) × (2l(n − 1)/2l + 1) ≤ 2l(n − 1)/2l

Therefore,

.0 ≤ n!
2n × ln−1

2 l! ×
l
(n+1

2

l
l!

. (5.24)

≤
2 × 4 × 6 × · · · × 2

l
n−1
2

l
×

l
2
l

n−1
2

l
+ 1

2 × 4 × 6 × · · · × (2
l

n+1
2

l
− 2) × 2

l
n+1
2

l (5.25)

=

l
2
l

n−1
2

l
+ 1

2
l

n+1
2

l <

l
2
l

n+1
2

l

2
l

n+1
2

l = 1
l
2
l

n+1
2

l → 0 (n → ∞)

And hence,

. lim
n→+∞

n!
2n × l(n − 1)/2l! × l(n + 1)/2l! = 0

The following theorem demonstrates that the conclusion of Lemma 5.1 is
applicable to any DNA sequence set S(n,m). characterized by length n. and GC
content m..

Theorem 5.2 For the DNA sequence set S(n,m)., which includes DNA sequences
of length n.with a GC content of m. (where 1 ≤ m ≤ n−1.), as n. approaches infinity,
the ratio of |S(n,m)|. to |S(n)|. tends toward zero. That is,

. lim
n→∞

|S(n,m)|
|S(n)| = 0 (5.26)

5.3 Counting DNA Coding Sequences Based on GC Content 149

Proof Since for any m. (1 ≤ m ≤ n − 1.), we have

.

ll
n

m

l
≤

ll
n

ln/2l
l

(5.27)

By Theorem 5.1, we know that |S(n,m)| ≤ |S(n, ln/2l)|.. Thus, from Lemma 5.1,
the conclusion holds.

The GC content of a DNA sequence influences the melting temperature Tm .. To
achieve consistent melting temperatures across all designed DNA sequences, it is
advisable to maintain uniform GC content. In practical applications, for a given
DNA sequence length n., the typical range for GC content m. is as follows:

.

l
1

3
n

l
≤ m ≤

l
2

3
n

l
(5.28)

5.3.2 DNA Coding Design with Identical GC Content

Building on the concepts discussed in Sect. 5.3.1, this section introduces the
construction algorithm for the set S(n,m). of DNA sequences with length n. and
GC content m., where 1 ≤ m ≤ n − 1.. For ease of reference, we represent the four
nucleotide bases using the symbols 0, 0, 1, 1., as follows:

.A → 0, T → 0, C → 1, G → 1 (5.29)

Thus, DNA sequences can be encoded using sequences consisting of 0, 0, 1, 1.. For
example, the sequence AATGCTGCATGG. is encoded as 000110110011..

We now present the specific steps and methods for constructing S(n,m).:

Step 1. Identify the positions of the m. ones in a sequence of length n..
The remaining n − m. positions will be filled with zeros. The total num-
ber of such combinations is given by

l
n
m

l
.. To determine these positions, we

can treat the sequence of length n. as a binary number and systematically
arrange the combinations in either ascending (or descending) order. For instance,
when n = 5. and m = 2., the possible sequences can be listed as follows:
00011, 00101, 00110, 01001, 01010, 01100, 10001, 10010, 10100., and 11000.
Step 2. Apply the complementary operation to the m. ones in each sequence
identified in Step 1. The number of complementary sequences equals 2m

.

for every sequence. This operation is carried out by carefully arranging the
sequences in ascending (or descending) order. For example, for the sequence
labeled 00101., the complementary of the ones generates the following sequences:
00101, 00101, 00101., and 00101..
Step 3. Perform the complementary operation on the n − m. zeros in each
sequence determined in Step 2. The number of complementary sequences for

150 5 DNA Coding Theory and Algorithms

each sequence is 2n−m
.. The complement operation is carried out in the same

manner as in Step 2 by arranging the sequences in ascending (or descending)
order. For example, for the sequence 00101. from the five sequences mentioned
earlier, the complementary operation on the zeros yields the following results:
00101, 00101, 00101, 00101, 00101., 00101., 00101., and 00101..

Following this procedure, all the sequences in S(n,m). can be constructed.

5.4 Template Method

The template-based DNA coding method represents an early classical approach
to generating DNA codes, initially proposed by Frutos et al. [16]. This method
constructs a set of DNA sequences, denoted as S ., by utilizing a binary template
set T . and a mapping set M . according to the following rule:

.T × M → S (5.30)

The generation rules are defined as follows: 1×1 → T., 1×0 → A., 0×1 → G., and
0× 0 → C.. This method has proven effective in surface-based DNA computing for
solving the SAT problem. The sequence generation rules indicate that the primary
function of the template set is to dictate the positions of AT and GC pairs within
a sequence. In contrast, the mapping set determines the specific nucleotide at each
position—either A or T and G or C.

5.4.1 Preliminaries for Template Method

The template coding method generally requires two key conditions. (1) The GC
content of the encoded sequences should be approximately 50%. (2) For any two
generated sequences si . and sj ., both the Hamming distance H(si, sj). and the
reverse-complementary Hamming distance Hrc(si, sj). must satisfy the following
criteria: H(si, sj) ≥ d . and Hrc(si, sj) ≥ d ., to prevent complementary hybridiza-
tion between the sequences, where d . is typically less than half the length of the
sequences. Condition (1) can be achieved easily by ensuring an equal distribution
of 0s and 1s in each sequence within the template set T .. To fulfill condition (2),
the template set T . must undergo refinement. The following method is proposed to
achieve this.

For a specific template sequence t ∈ T . and a mapping sequence m ∈ M ., we
can define s = t × m. (from 5 . . to 3 . .) as the sequence generated by t . and m.. It is
evident from the definition of template coding that the reverse sequence sr

. can be
obtained by reversing both the template sequence t r . and the mapping sequence mr

.,
i.e., sr = t r × mr (3. → 5.).. In a similar manner, the complementary sequence sc

.

5.4 Template Method 151

can be constructed by the reverse sequence t r . of t and the reverse-complementary
sequence mrc

. of the mapping sequence m, i.e., sc = t r × mrc (3. → 5.)..
In addition, if the template sequence t ∈ T . is symmetric, and the mapping

sequences m1,m2 ∈ M . satisfy the condition mr
1 = mc

2 ., then the sequences s1 =
t ×m1 . and s2 = t ×m2 ., generated from t .using m1 . and m2 ., respectively, are reverse-
complementary. Building on this insight, the template set T . can be categorized into
two subsets: Tn . (the asymmetric template set) and Ts . (the symmetric template set),
such that T = Tn ∪Ts . and Tn ∩Ts = ∅.. The corresponding mapping sets for Tn . and
Ts . are denoted as Mn . and Ms ., respectively. Once the subsets Tn ., Ts ., Mn ., and Ms .

are established, the size of the coding set S . generated through the template method
is expressed by the following formula:

. |S| = |Tn| × |Mn| + |Ts | × |Ms | (5.31)

The template-based coding method has three key properties:

Property 1 If the asymmetric template set Tn . fulfills the criteria for both Hamming
and reverse-complementary Hamming distances, and the mapping set Mn .meets the
Hamming distance requirement, then the sequence set Sn . generated by Tn . and Mn .

satisfy both the Hamming and reverse-complementary Hamming distances.

Property 2 If the symmetric template set Ts . satisfies only the Hamming distance
requirement, and the symmetric mapping set Ms . meets both the Hamming and
reverse-complementary Hamming distance criteria, then the sequence set Ss . gen-
erated by Ts . and Ms . satisfy both the Hamming and reverse complement Hamming
distances.

Property 3 If both the asymmetric template set Tn . and the symmetric template set
Ts . satisfy the Hamming distance criteria, then the sequence set S = Sn ∪ Ss . satisfy
both the Hamming and reverse-complementary Hamming distances.

Based on the above three properties, the template-based coding method can be
summarized as follows: When the template sequences t1, t2 ∈ T . or the mapping
sequences m1,m2 ∈ M . adhere to a specific distance constraint, the resulting DNA
sequences s1, s2 . also exhibit the corresponding properties. The fundamental idea
behind this method is to convert the DNA coding problem defined over the alphabet
ΣDNA = {A, G, C, T}. into one defined over the binary alphabet Σ01 = {0, 1}.. The
final coding set is generated by identifying the largest asymmetric template set Tn .

and symmetric template set Ts ., along with their respective mapping sequence sets
Mn . and Ms ., which meet the specified conditions.

According to Property 3, it is clear that once the template sets Tn . and Ts . that
satisfy the Hamming distance criteria are established, the sequence set S . fulfilling
condition (2) can be derived. This problem can be solved using graph theory. The
following method describes determining the template set by locating independent
sets within an n.-dimensional hypercube.

To generate a DNA sequence set of length n, we aim to identify the template
sets Tn . and Ts . that satisfy the Hamming distance criterion among the 2n

. binary

152 5 DNA Coding Theory and Algorithms

sequences of length n. We begin by constructing an n-dimensional hypercube,
denoted as Gn .. The vertices of Gn . consist of the 2n

. binary sequences of length
n. An edge connects two vertices if their corresponding binary sequences differ
by exactly one bit, which indicates a Hamming distance of 1. As a result, each
vertex in Gn . is adjacent to exactly n other vertices. The sets Tn . and Ts . that meet
the Hamming distance requirement correspond to independent sets in Gn .; these are
subsets of vertices where no two vertices are adjacent. For convenience, we divide
the vertices of Gn . into n+1. classes, with each class corresponding to a column. The
i-th class (where i = 1, 2, . . . , n+1.) contains the vertices that correspond to binary
sequences of length n with exactly i − 1. ones. It is evident that each column of
Gn . generates sequences with the same GC content, and sequences generated from
different columns have different GC contents. To meet the template coding condition
(1), which requires that the GC content of the encoded sequences is approximately
50%, we restrict the search for the template sets to the middle columns: the

l
n
2

l
.-th,

(
l

n
2

l − 1).-th, and (
l

n
2

l + 1).-th columns. In this way, the problem of determining
Tn . and Ts . is transformed into the problem of searching for independent sets in the
middle columns of Gn ..

5.4.1.1 Template Coding Search Algorithms

Frutos et al. [16] employed a semi-analytical and semi-inferential approach to derive
the maximum template set T . and the maximum mapping set M . for a coding length
of n = 8.. To build upon this finding and develop template sets T . and mapping sets
M . for different coding lengths, a random search algorithm was introduced in [18].

(1) Template Set T
Step 1. Generate a binary string set B that consists of an equal number of 0s and
1s.
Step 2. Partition the set B into symmetric subsets Bs . and asymmetric subsets Bn ..
Step 3. Eliminate from Bn . all binary strings x ∈ Bn . for which Hr(x, x) < d ..
Step 4. Randomly select a binary string x from Bn ., add it to the asymmetric
template set Tn ., and remove from Bn . all binary strings whose Hamming distance
to Tn . is less than d.
Step 5. Continue to repeat Step 4 until Bn . is empty, resulting in the final
asymmetric template set Tn ..
Step 6. Remove from Bs . all binary strings whose Hamming distance to Tn . is less
than d.
Step 7. Randomly select a binary string x from Bs ., add it to the symmetric
template set Ts ., and eliminate from Bs . all binary strings whose Hamming
distance to Ts . is less than d.
Step 8. Continue repeating Step 7 until Bs . is empty, resulting in the final
symmetric template set Ts ..

5.4 Template Method 153

(2) Mapping Set M .

Step 1. Randomly select a binary string x . from the set B . and add it to the set Mn ..
Subsequently, remove from B . all binary strings that have a Hamming distance to
Mn . of less than d ..
Step 2. Continue to repeat Step 1 until B . is empty, resulting in the final set Mn ..
Step 3. Remove from B . all binary strings x ∈ B . that satisfy the condition
Hrc(x, x) < d ..
Step 4. Randomly select a binary string x . from the set B . and add it to the set Ms ..
Remove from B . all binary strings that have a Hamming distance to Ms . of less
than d ..
Step 5. Continue to repeat Step 4 until B . is empty, resulting in the final set Ms ..

Here, the Hamming distance between a binary string and a set is defined as the
minimum Hamming distance between the binary string and all binary strings within
the set.

It is essential to understand that for a specific coding length and Hamming
distance constraint, the template and mapping sets that fulfill these criteria are not
unique. In practical applications, these sets can be further refined using the H-
measure proposed by Garzon [34], which enhances the coding resilience against
shifting hybridization. Table 5.3 illustrates the sizes of the maximum template set
T and the maximum mapping set M for coding lengths of n = 8, 12, 16, and 20.
According to information-theoretic coding methods, Mn . represents a specialized
type of Hamming code (4k, 8k, 2k)., where k takes on values of 1, 2, 3, and so on.
In an n = 4k .-dimensional Hamming space, the maximum number of codes with a
Hamming distance of at least 2k is 8k. Excluding the two specific coding sequences
0n

. and 1n
., the effective number of such codes is 8k − 2.. Additionally, since the

distances between vertices in each column of the binary hypercube (see Sect. 5.4.1)
are always even, the distance constraint d has practical significance only when set
to an even value. It is evident that if d exceeds 2k, the size of the template set T will
noticeably diminish. Therefore, it is appropriate to consider d = 2k . as the upper
limit for the coding distance requirement.

Table 5.3 The size of the
maximum template set T . and
mapping set M . for different
coding lengths

n 8 12 16 20

Tn . 6 6 12 9

Ts . 2 2 6 0

Mn . 14 22 30 38

Ms . 5 5 13 0

S 94 142 438 342

154 5 DNA Coding Theory and Algorithms

5.4.2 Thermodynamic Stability of DNA Codes

To improve the sequence specificity of DNA molecular hybridization, Frutos et
al. [16] introduced symmetric “word labels” at both ends of each generated DNA
sequence. The enhanced coding structure, incorporating these word labels, is rep-
resented as 5’-GCTTvvvvvvvvTTCG-3’,. where “vvvvvvvv” signifies the variable
DNA sequence. Hybridization experiments were conducted on a gold-coated glass
surface to assess the specificity of sequences generated by the template method.
The findings revealed that at 22 ◦ .C, two generated DNA sequences produced false
positives. In contrast, when the temperature was raised to 37 ◦ .C, hybridization
occurred only when the sequences were fully complementary. This indicates that
increasing the reaction temperature can effectively mitigate the occurrence of “false
positives.”

5.4.3 Optimization of Template Sets

Given the significant impact of template sequences on coding quality, the optimiza-
tion of template quality can be achieved from two aspects [19]: (1) the H-measure
property of individual template sequences and (2) the H-measure property among
different template sequences. Because DNA sequences have a directional nature, it
is crucial not only to ensure that pairs of sequences maintain a sufficient shift in
H-measure in the same direction but also to minimize the potential for hybridization
between them. As a result, the template set must satisfy the following conditions:

• For any template sequence x ., its own shift distance h(x, x). satisfy:

.h(x, x) = min
l
H-measure(x, xr),H-measure(x, x)

l ≥ d (5.32)

• For any two template sequences x . and y ., their shift distance h(x, y). satisfy:

.h(x, y) = min
l
H-measure(x, yr),H-measure(x, y)

l ≥ d . (5.33)

Here, d . and d .
. are positive integers, and d ≥ d .

.. In general, for a coding length n.,
d . ≤ ln/3l..

The influence of mapping sequences on coding quality is relatively minimal.
Therefore, it is typically sufficient to ensure that any two mapping sequences x . and
y . adhere to the following Hamming distance condition: H(x, y) ≈ ln/2l., where n.

denotes the coding length.

5.4 Template Method 155

Given the constraints established for the template and mapping sets above, the
following conditions apply to any two generated sequences s, t ∈ S ..

.H-measure(s, t) ≥ d . (5.34)

.H-measure(sr , tc) ≥ d . (5.35)

Upon defining the search space for the template set (which includes the collection
of binary sequences with a specified ratio of 0s to 1s), we may find a significant
number of binary strings within this space that display small self-shift distances.
The existence of these sequences can lead random search algorithms to select
binary sequences with unfavorable shift distance characteristics, adversely affecting
the candidate template set’s overall shift distance properties and complicating the
search process. To effectively reduce the impact of subpar sequences and improve
algorithm efficiency, the search process for the template set is divided into two
stages: the first stage involves filtering the initial search space, while the second
stage entails conducting a random search within the filtered space [61]. The specific
steps of the algorithm are as follows:

Step 1. Generate a set of binary strings B .with specified 0-1 content.
Step 2. Select a binary string x . from the set B . and remove it from the set. If the
Hamming distance h(x, x) ≥ d ., add x . to the set A..
Step 3. Continue repeating Step 2 until the set B . is empty.
Step 4. Construct a relation matrix M . based on the set A.. For any two sequences
x . and y . in A., if the Hamming distance h(x, y) ≥ d .

., then setMij = 1.; otherwise,
set Mij = 0.. (Given that d ≥ d .

., the diagonal of the matrix will consist entirely
of 1’s.)
Step 5. Identify the row with the most 1’s in the matrix M . and its corresponding
columns. If multiple rows have the same number of 1’s, randomly select one.
Add the corresponding binary strings to the template set T ., and then remove the
selected row and its associated columns, along with any columns that contain
only 0’s.
Step 6. Repeat Step 5 until the matrix M . is empty.
Step 7. The final template set T . is obtained.

This phased search strategy can significantly improve the shift distances of the
binary sequences in the template set when the coding lengths are 8, 12, 16, 20, or
24.

The template method provides a customized approach to generating DNA
sequences, ensuring that the resulting DNA sequences adhere to specific distance
constraints. In practical applications, the relevant parameters can be defined based
on the situation’s specific needs. However, this coding method has a significant
limitation: it does not offer control over the potential formation of secondary
structures or unintended hybridizations when two encoded sequences are linked
together to form a longer chain.

156 5 DNA Coding Theory and Algorithms

To enhance the quality of the final DNA sequence set S . produced by the template
method in practical applications, the concept of a “template frame” was introduced
in [62]. Given a template set T = {t1, t2, · · · , tm}., a template frame is a sequence
of length m × n. formed by arranging the sequences in T . in some order, where n.

is the length of the template sequences. An optimal template frame maximizes the
total shift distance for all sequences t1, t2, . . . , tm .. Let Pbest = t1t2 · · · tm . denote
an optimal template frame. The sequence set S . generated through this method can
be divided into m. disjoint subsets based on the template sequences utilized in their
production:

. S = S1 ∪ S2 ∪ . . . ∪ Sm,

where Si . (i = 1, 2, . . . , m.) is the subset of sequences created by the sequence ti .
along with the mapping set. Please refer to [63, 64] for further information on the
coding frame.

5.5 Multi-Objective Optimization Method

Effective DNA sequence design necessitates the simultaneous consideration of
multiple constraints, which can be framed as various optimization objectives. As
a result, the DNA coding problem can be reformulated as a multi-objective opti-
mization challenge involving several conflicting goals. In recent years, numerous
heuristic algorithms have emerged to address the complexities of multi-objective
optimization in designing DNA sequences. Notable examples include genetic algo-
rithms [65], ant colony algorithms [66–68], particle swarm optimization [69, 70],
and bee algorithms [71]. These swarm intelligence methods have demonstrated
considerable advantages and promise in solving DNA coding problems effectively.

5.5.1 Optimization Model for DNA Coding Design

The DNA coding design through multi-objective optimization methods typically
considers six key constraints, which act as coding objective functions. These
constraints include: H-measure constraint (denoted as fHm .), similarity constraint
(denoted as fS .), hairpin structure constraint (denoted as fHa .), continuity constraint
(denoted as fC .), GC content constraint (denoted as fGC .), and melting temperature
constraint (denoted as fT m .). Building upon these constraints, the multi-objective
optimization model for DNA coding design can be described as follows:

. Minimize: F(X) = [fHm(X), fS(X), fHa(X), fC(X), fGC(X), fT m(X)]
(5.36)

5.5 Multi-Objective Optimization Method 157

This optimization aims to identify a set of DNA sequences, referred to as X .,
that achieves optimal values for the specified objective functions. Specifically,
we aim to find a set X = {x1, x2, . . . , xN }. consisting of N . DNA sequences,
each of length n.. The sequences within X . should simultaneously minimize six
predetermined constraints. The methods for calculating these six constraints are
outlined as follows:

. fHm(X) =
N7

i=1

H-measure(xi)

. fS(X) =
N7

i=1

Similarity(xi)

. fHa(X) =
N7

i=1

Hairpin(xi)

. fC(X) =
N7

i=1

Continuity(xi)

. fGC(X) =
N7

i=1

llGC(xi) − GC∗ll

. fT m(X) =
N7

i=1

llTm(xi) − T ∗
m

ll

where GC∗
. and T ∗

m . represent the specified GC content and melting temperature,
respectively.

5.5.2 Multi-Objective Evolutionary Algorithm for DNA Coding
Design

In multi-objective evolutionary optimization, the evaluation of individual superiority
relies on dominance relationships. An individual u. is considered to dominate
another individual v . if u. outperforms v . across all objective function values, or if
u. is at least as good as v . in every objective function and better in at least one. This
relationship is denoted as u < v .. Conversely, when u. and v . possess a combination
of advantages and disadvantages across various objectives, i.e., u. excels in some
areas but underperforms in others, they are classified as mutually non-dominated. In

158 5 DNA Coding Theory and Algorithms

Fig. 5.2 Dominance relationships of solutions in multi-objective optimization

this scenario, a direct comparison of their superiority is not possible. Dominance
relationships play a vital role in multi-objective optimization, as they facilitate
the assessment of individual superiority and the construction of the Pareto front.
Figure 5.2 illustrates all possible dominance relationships among individuals in
multi-objective evolutionary optimization.

Comparing the superiority of mutually non-dominated candidate solutions (i.e.,
individuals) poses certain challenges. Nonetheless, those demonstrating a balanced
performance across all objective functions are generally favored. For example,
in the context of Similarity and H-measure, if the Similarity between two DNA
sequences x and y is excessively high, it may lead to nonspecific hybridization
between x and the complementary sequence of y. Likewise, if the H-measure
values of x and y are too high, the sequences may directly complement each
other, resulting in nonspecific hybridization mismatches. Thus, within the set of
mutually non-dominated candidate solutions, it is optimal to select solutions that
balance Similarity and H-measure. This strategy effectively minimizes nonspecific
hybridization among DNA molecules, thereby enhancing the reliability of DNA
computing. To facilitate this balance, the fitness function typically normalizes the
values of the objective functions and incorporates a squared term that represents
the difference between the Similarity and H-measure values. This approach guides
the algorithm toward selecting solutions that reconcile conflicting objectives. The
fitness function is defined as follows:

.Fitness(X) = (fS − fHm)2 +
m7

i=1

fi(X) − fmin
i

fmax
i − fmin

i

(5.37)

Here, fi(X). represents the value of the i .-th objective function for the DNA sequence
set X ., and m. denotes the number of constrained objectives, which is typically set
to 6.

5.5 Multi-Objective Optimization Method 159

5.5.3 Multi-Objective Evolutionary Algorithms for DNA Code
Design

The multi-objective evolutionary algorithm is a fundamental framework for tackling
multi-objective optimization problems. Its primary principle is to gradually approx-
imate Pareto-optimal solutions through the iterative evolution of a population.
Denote the population at generation t . as Pt ., where Pt (i). represents the i .-th
individual in the population. Each individual corresponds to a candidate solution,
that is, a set of DNA sequences. The algorithm begins by generating the population
Pt . and computing the objective function values for each individual p .. Next,
mutation operations create a new candidate solution q . from the population. If q ≺ p .,
then q . replaces p .. Conversely, if p ≺ q ., then q . is discarded. In situations where
neither q ⊀ p .nor p ⊀ q .holds, the fitness function values Fitness(q). and Fitness(p).

are compared. If Fitness(q) < Fitness(p)., then q . takes the place of p .; otherwise,
q . is discarded. This iterative process continues, progressively approaching Pareto-
optimal solutions through evolutionary iterations until the algorithm meets the
predefined termination conditions.

This framework outlines the fundamental structure of evolutionary multi-
objective optimization algorithms, which are extensively applied to various
multi-objective optimization problems. The corresponding pseudocode is provided
in Algorithm 1.

Algorithm 1 Multi-objective evolutionary algorithm framework
1: Initialization > Initialize the population
2: while t < max iteration do > Set the maximum number of evolutionary iterations
3: for i = 1 to P do
4: p ← Pt (i)
5: q ← Mutation(Pt (i)) > Perform mutation on the individual
6: Calculate Objective Functions for p and q
7: if q ≺ p then > If the new individual q dominates p, replace p
8: Pt (i) ← q
9: else if q ⊀ p and p ⊀ q then > If p and q are mutually non-dominated
10: if Fitness(q) > Fitness(p) then
11: Pt (i) ← q > Replace p if q has better fitness
12: end if
13: end if
14: end for
15: t ← t + 1
16: end while

In recent years, a variety of algorithms for designing DNA sequences have been
developed in the literature, grounded in the multi-objective evolutionary algorithm
framework. These algorithms effectively achieve a balanced optimization across
multiple conflicting objectives through non-dominated sorting and evolutionary
mechanisms, leading to the generation of high-quality DNA sequence sets. In

160 5 DNA Coding Theory and Algorithms

2019, Chaves-González et al. [41] explored the parallelizability of multi-objective
evolutionary algorithms for constrained multi-objective optimization problems,
successfully producing reliable DNA sequences. The following year, Bano et al.
[72] introduced an opposition-based memetic generalized differential evolution
algorithm (MGDE3) to address four conflicting design criteria for reliable DNA
sequence design. In 2023, Duan et al. [73] leveraged constraint functions and a
block operator to simplify the dimensionality of DNA coding problems, reducing
the objective functions to two and optimizing them through multi-objective evolu-
tionary algorithms.

Given the propensity of multi-objective optimization algorithms to become
ensnared in a local optimum, researchers have been exploring ways to enhance both
local and global search capabilities. In 2023, Xie et al. [42] introduced a billiard-
hitting strategy to adjust the positions of individuals within the population, thereby
expanding the global search range. They also developed a stochastic lens opposite
learning mechanism to bolster the algorithm’s capacity to escape local optima.
Similarly, Zhang et al. [74] proposed a two-stage constrained multi-objective
evolutionary algorithm that addresses the limitations of traditional algorithms,
which frequently get trapped in local optima when solving DNA coding challenges.
In 2024, Wu et al. [75] proposed the LPSO algorithm by integrating improved
refraction opposition-based learning and salation learning. They also introduced
Gaussian mutation to increase population diversity. That same year, Zhu et al. [76]
presented a Jaya algorithm based on normal clouds, which utilizes a combinatorial
learning approach to update both the optimal and worst positions. This algorithm
improves local search through a normal cloud model and eliminates subpar solutions
using a harmony search algorithm, ultimately achieving high-quality results.

Multi-objective evolutionary optimization algorithms have exhibited remarkable
effectiveness in DNA coding design. Nonetheless, critical challenges persist, partic-
ularly in enhancing their ability to address highly complex problems while ensuring
generalizability across diverse experimental conditions. Furthermore, as the scale of
problems expands, it is essential to optimize the computational efficiency of these
algorithms to ensure their continued effectiveness.

5.6 Implicit Enumeration Method

Given a DNA coding length n, the solution space encompasses 4n
. potential

DNA sequences. To identify the largest DNA coding set that complies with
specific constraints, the most straightforward approach involves evaluating each
candidate DNA sequence individually. However, as the coding length n increases,
the solution space expands exponentially, which leads to a significant rise in the
computational complexity associated with this enumeration method. Balinski [77]
highlighted that effectively addressing this challenge requires strategic enumeration
techniques. Implementing such strategies during the enumeration process makes it
possible to preemptively exclude numerous non-compliant DNA sequences, thereby

5.6 Implicit Enumeration Method 161

minimizing unnecessary computations. As early as 1965, Balas [78] introduced an
implicit enumeration method aimed at identifying the optimal solution to a problem
by examining only a subset of variable combinations. This approach has proven
effective in solving 0-1 integer programming problems. Building on this foundation,
reference [21] proposed a DNA coding method that integrates implicit enumeration
techniques by formulating coding constraints into conditional inequalities within
the framework of integer linear programming. A pruning strategy is then employed
to efficiently navigate the 4n

. solution space, ensuring the selection of the largest set
of DNA sequences that satisfy the given constraints. This approach improves search
efficiency and effectively addresses the computational challenges posed by larger
problem sizes. A detailed explanation of this methodology is provided below.

5.6.1 Coding Algorithm

When generating DNA sequences of length n, we define a candidate solution
x = 5.−x1x2 · · · xn−3.

., where each xi ∈. {A,C,G, T }. is called a base variable.
A candidate solution is deemed feasible if it complies with the specified coding
constraints. The goal of DNA code design is to identify the largest possible set of
feasible solutions.

The implicit enumeration coding method does not directly enumerate and
evaluate all 4n

. candidate solutions. Instead, it categorizes these solutions into
multiple groups and carries out implicit enumeration on a group-by-group basis.
To clarify how the candidate solutions are organized, we introduce the concept of
a partial solution. A partial solution is defined as a sequence that incorporates both
fixed bases and variable bases. For example, the sequence 5. − CTGx4x5−3.

. serves
as a partial solution of length 5, with x1 = C., x2 = T., x3 = G., while x4 . and x5 .
represent variable bases. The complete set of a partial solution is the collection of
candidate solutions generated by assigning precise bases to all base variables within
the partial solution. In the aforementioned example, the complete set of the partial
solution 5. − CTGx4x5−3.

. is:

.

5. − CTGCC − 3. 5. − CTGAC − 3. 5. − CTGTC − 3. 5. − CTGGC − 3.
5. − CTGCA − 3. 5. − CTGAA − 3. 5. − CTGTA − 3. 5. − CTGGA − 3.
5. − CTGCT − 3. 5. − CTGAT − 3. 5. − CTGTT − 3. 5. − CTGGT − 3.
5. − CTGCG − 3. 5. − CTGAG − 3. 5. − CTGTG − 3. 5. − CTGGG − 3.

When a partial solution x of length n incorporates n − m. base variables, it can
generate 4n−m

. distinct candidate solutions. Thus, the complete set derived from x
comprises 4n−m

. candidate solutions. Notably, if the partial solution x contains no
base variables, the complete set will consist of just one candidate solution: x itself.

The implicit enumeration coding approach begins by generating a candidate
solution and subsequently testing each partial solution against coding constraints

162 5 DNA Coding Theory and Algorithms

while considering the complete set of potential partial solutions. The process starts
with a partial solution represented as x = 5.−x1x2 · · · xn−3.

., consisting of n
base variables. The algorithm iteratively reduces the number of base variables by
assigning specific bases to them. At each stage, a new partial solution is produced
with one fewer base variable, which is then tested against the coding constraints. If
all base variables are assigned and the resulting solution satisfies all constraints,
the candidate solution is considered feasible. Conversely, if any partial solution
violates the coding constraints, the entire set of candidate solutions associated with
that partial solution is discarded, as none can be valid. This method enables the
algorithm to eliminate infeasible partial solutions and avoids unnecessary further
exploration based on them.

The implicit enumeration search algorithm is comprised of four key steps:

Step 1. Parameter Initialization: Start by defining the relevant parameters,
including coding length, the number of codes, and various coding constraints,
tailored to the scale of the specific DNA computing problem.
Step 2. Generation strategy for new candidate solutions: Generate optimal and
feasible solutions by exploring all possible coding combinations. During this
step, prioritize constraint parameters that exhibit the fastest convergence speed
among multiple target constraints to create new candidate solutions.
Step 3. Constraint evaluation for candidate solutions: Assess each generated
candidate DNA sequence to determine whether it adheres to the specific DNA
coding constraints. If a candidate sequence fails to satisfy a constraint, con-
vert the violated constraint into a new generation parameter, allowing for the
production of new candidate solutions. This approach reduces the number of
enumerations and enhances the algorithm’s convergence speed.
Step 4. Algorithm termination rule: The algorithm stops either when all 4n

.possi-
ble codes have been explored or when a sufficient number of DNA sequences that
fulfill the requirements have been generated. Each time a new candidate solution
is created, it is methodically checked to ensure it meets all coding constraints. If
the candidate sequence fulfills all requirements, it is added to the DNA sequence
set S. However, if it fails to comply with any constraint, the violated constraint
is transformed into parameters for generating new candidate solutions, and the
constraint testing process is repeated. This process continues until all conditions
are satisfied or all potential solution spaces have been explored. The algorithm
stops when the number of generated DNA sequences reaches the predetermined
requirement, or when the solution space has been thoroughly searched.

5.6.2 Application of Implicit Enumeration Coding Method

Compared to methods such as the template method, genetic algorithms, simu-
lated annealing, and multi-objective evolutionary algorithms, the DNA sequences
generated through the implicit enumeration coding method demonstrate superior

5.6 Implicit Enumeration Method 163

Fig. 5.3 A DNA coding analysis and design system designed by utilizing implicit enumeration
techniques

stability and reliability regarding DNA coding quality. Furthermore, this approach
provides improved scalability. The algorithm can generate a substantial array of
DNA sequences that adhere to coding constraints, making it particularly well-suited
for the design requirements of DNA molecules in various nucleic acid experiments
[21].

We developed a DNA coding analysis and design software system grounded
in the implicit enumeration algorithm, as depicted in Fig. 5.3. This system is
designed to create DNA sequences that fulfill specific constraints tailored to various
coding requirements and offers performance analysis for each generated DNA
sequence. Depending on their experimental objectives, users can select from various
constraints, including thermodynamics, Hamming distance, secondary structure,
and base composition. The software adeptly navigates the 4n

. solution space to yield
the largest possible set of DNA molecules that meet the selected criteria.

The graph coloring problem is a well-established NP-complete problem with
applications across various domains, including class scheduling, circuit layout, and
register allocation. In our examination of the 3-coloring problem on a graph with
61 vertices, as depicted in Fig. 5.4, we generated 129 DNA sequences using our
DNA coding analysis and design system (illustrated in Fig. 5.3) for biochemical
experiments. All sequences were designed to meet specific coding constraints: 50%
GC content, a maximum of three consecutive identical bases, a minimum of six
overlapping subsequences, complete complementarity at the 3’ end, restrictions
on hairpin structures, and specific melting temperature requirements. The 129
generated DNA sequences were analyzed using the ABI DNA Analyzer. The results

164 5 DNA Coding Theory and Algorithms

Fig. 5.4 A graph with 61
vertices [8]

Fig. 5.5 DNA sequence analysis by ABI DNA Analyzer

demonstrated that these sequences effectively prevent non-specific hybridization
between DNA molecules, as shown in Fig. 5.5. Utilizing these codes, we created
a DNA-based model to determine a 3-coloring of the graph. Our biochemical
experiments successfully yielded the DNA sequence representing the graph’s unique
solution. For additional details regarding the design of the DNA sequence and the
specific DNA computation model, please refer to reference [7].

References

1. Xu J., Liu W., Zhang K., Zhu E.: DNA coding theory and algorithms. Artificial Intelligence
Review 58, 178 (2025). https://doi.org/10.1007/s10462-025-11132-x

2. Adleman, L.M.: Molecular computation of solutions to combinatorial problems. Science
266(5187), 1021–1024 (1994).

3. Lipton, R.J.: DNA solution of hard computational problems. Science 268(5210), 542–545
(1995).

4. Braich, R.S., Chelyapov, N., Johnson, C., et al.: Solution of a 20-variable 3-SAT problem on a
DNA computer. Science 296(5567), 499–502 (2002).

https://doi.org/10.1007/s10462-025-11132-x
https://doi.org/10.1007/s10462-025-11132-x
https://doi.org/10.1007/s10462-025-11132-x
https://doi.org/10.1007/s10462-025-11132-x
https://doi.org/10.1007/s10462-025-11132-x
https://doi.org/10.1007/s10462-025-11132-x
https://doi.org/10.1007/s10462-025-11132-x
https://doi.org/10.1007/s10462-025-11132-x
https://doi.org/10.1007/s10462-025-11132-x

References 165

5. Liu, W., Gao, L., Liu, X., et al.: Solving the 3-SAT problem based on DNA computing. Journal
of Chemical Information and Computer Sciences 43(6), 1872–1875 (2003).

6. Zimmermann, K.-H.: Efficient DNA sticker algorithms for NP-complete graph problems.
Computer Physics Communications 144(3), 297–309 (2002).

7. Xu, J., Qiang, X., Zhang, K., et al.: A DNA computing model for the graph vertex coloring
problem based on a probe graph. Engineering 4(1), 61–77 (2018).

8. Zhu, E., Luo, X., Liu, C., et al.: An operational DNA strand displacement encryption approach.
Nanomaterials 12(5), 877 (2022).

9. Liu, C., Liu, Y., Zhu, E., et al.: Cross-inhibitor: a time-sensitive molecular circuit based on
DNA strand displacement. Nucleic Acids Research 48(19), 10691–10701 (2020).

10. Wang, F., Zhang, X., Chen, X., et al.: Priority encoder based on DNA strand displacement.
Chinese Journal of Electronics 33(6), 1538–1544 (2024).

11. Garzon, M.H.: DNA codeword design: Theory and applications. Parallel Processing Letters
24(2), 1440001 (2014).

12. Chaves-González, J.M., Vega-Rodríguez, M.A.: A multiobjective approach based on the
behavior of fireflies to generate reliable DNA sequences for molecular computing. Applied
Mathematics and Computation 227, 291–308 (2014).

13. Deaton, R.J., Murphy, R.C., Garzon, M.H., et al.: Good encodings for DNA-based solutions to
combinatorial problems. In: Proceedings of the DNA Based Computers, pp. 247–258. Amer
Mathematical Society, New Jersey, USA (1996).

14. Deaton, R., Garzon, M., Murphy, R., et al.: Reliability and efficiency of a DNA-based
computation. Physical Review Letters 80(2), 417 (1998).

15. Deaton, R., Chen, J., Bi, H., et al.: A PCR-based protocol for in vitro selection of non-
crosshybridizing oligonucleotides. In: Proceedings of the 8th International Workshop on
DNA-Based Computers, pp. 196–204. Springer Berlin Heidelberg, Sapporo, Japan (2003).

16. Frutos, A.G., Liu, Q., Thiel, A.J., et al.: Demonstration of a word design strategy for DNA
computing on surfaces. Nucleic Acids Research 25(23), 4748–4757 (1997).

17. Marathe, A., Condon, A.E., Corn, R.M.: On combinatorial DNA word design. Journal of
Computational Biology 8(3), 201–219 (2001).

18. Liu, W., Wang, S., Gao, L., et al.: DNA sequence design based on template strategy. Journal of
Chemical Information and Computer Sciences 43(6), 2014–2018 (2003).

19. Arita, M., Kobayashi, S.: DNA sequence design using templates. New Generation Computing
20, 263–277 (2002).

20. Hartemink, A.J., Gifford, D.K., Khodor, J.: Automated constraint-based nucleotide sequence
selection for DNA computation. Biosystems 52(1–3), 227–235 (1999).

21. Kai, Z., Linqiang, P., Jin, X.: A global heuristically search algorithm for DNA encoding.
Progress in Natural Science 17(6), 745–749 (2007).

22. Penchovsky, R., Ackermann, J.: DNA library design for molecular computation. Journal of
Computational Biology 10(2), 215–229 (2003).

23. Zhu, E., Jiang, F., Liu, C., et al.: Partition independent set and reduction-based approach for
partition coloring problem. IEEE Transactions on Cybernetics 52(6), 4960–4969 (2020).

24. Zhu, E., Zhang, Y., Wang, S., et al.: A dual-mode local search algorithm for solving the
minimum dominating set problem. Knowledge-Based Systems 298, 111950 (2024).

25. Tanaka, F., Nakatsugawa, M., Yamamoto, M., et al.: Developing support system for sequence
design in DNA computing. In: Proceedings of the 7th International Workshop on DNA-Based
Computers, pp. 129–137. Springer Berlin Heidelberg, Tampa, USA (2002).

26. Guangzhao, C., Yunyun, N., Yanfeng, W., et al.: A new approach based on PSO algorithm
to find good computational encoding sequences. Progress in Natural Science 17(6), 712–716
(2007).

27. Wei, W., Xuedong, Z., Qiang, Z., et al.: The optimization of DNA encodings based on GA/SA
algorithms. Progress in Natural Science 17(6), 739–744 (2007).

28. Jianhua, X., Jin, X., Xiutang, G., et al.: Multi-objective carrier chaotic evolutionary algorithm
for DNA sequences design. Progress in Natural Science 17(12), 1515–1520 (2007).

166 5 DNA Coding Theory and Algorithms

29. Kawashimo, S., Ono, H., Sadakane, K., et al.: Dynamic neighborhood searches for thermo-
dynamically designing DNA sequence. In: Proceedings of the 13th International Meeting on
DNA Computing, pp. 130–139. Springer Berlin Heidelberg, Memphis, USA (2008).

30. Kurniawan, T.B., Khalid, N.K., Ibrahim, Z., et al.: An ant colony system for DNA sequence
design based on thermodynamics. In: Proceedings of the 4th IASTED International Conference
on Advances in Computer Science and Technology, pp. 144–149. ACTA Press, Langkawi,
Malaysia (2008).

31. Caserta, M., Voß, S.: A math-heuristic algorithm for the DNA sequencing problem. In:
Proceedings of the International Conference on Learning and Intelligent Optimization, pp. 25–
36. Springer Berlin Heidelberg, Venice, Italy (2010).

32. Fouilhoux, P., Mahjoub, A.R.: Solving VLSI design and DNA sequencing problems using
bipartization of graphs. Computational Optimization and Applications 51, 749–781 (2012).

33. Caserta, M., Voß, S.: A hybrid algorithm for the DNA sequencing problem. Discrete Applied
Mathematics 163, 87–99 (2014).

34. Garzon, M., Neathery, P., Deaton, R., et al.: A new metric for DNA computing. In: Proceedings
of the 2nd Genetic Programming Conference, pp. 636–638. Morgan Kaufman, Stanford, USA
(1997).

35. Feldkamp, U., Banzhaf, W., Rauhe, H.: A DNA sequence compiler. In: Proceedings of the
6th International Meeting on DNA-Based Computers, pp. 1–10. Springer Berlin Heidelberg,
Leiden, Netherlands (2000).

36. Tulpan, D.C., Hoos, H.H., Condon, A.E.: Stochastic local search algorithms for DNA word
design. In: Proceedings of the 8th International Workshop on DNA-Based Computers, pp. 229–
241. Springer Berlin Heidelberg, Sapporo, Japan (2003).

37. Li, X., Wang, B., Lv, H., et al.: Constraining DNA sequences with a triplet-bases unpaired.
IEEE Transactions on Nanobioscience 19(2), 299–307 (2020).

38. Li, X., Wei, Z., Wang, B., et al.: Stable DNA sequence over close-ending and pairing sequences
constraint. Frontiers in Genetics 12, 644484 (2021).

39. Tanaka, F., Kameda, A., Yamamoto, M., et al.: Design of nucleic acid sequences for DNA
computing based on a thermodynamic approach. Nucleic Acids Research 33(3), 903–911
(2005).

40. Shin, S.-Y., Lee, I.-H., Kim, D., et al.: Multiobjective evolutionary optimization of DNA
sequences for reliable DNA computing. IEEE Transactions on Evolutionary Computation 9(2),
143–158 (2005).

41. Chaves-González, J.M., Martínez-Gil, J.: An efficient design for a multi-objective evolutionary
algorithm to generate DNA libraries suitable for computation. Interdisciplinary Sciences:
Computational Life Sciences 11, 542–558 (2019).

42. Xie, L., Wang, S., Zhu, D., et al.: DNA sequence optimization design of arithmetic optimization
algorithm based on billiard hitting strategy. Interdisciplinary Sciences: Computational Life
Sciences 15(2), 231–248 (2023).

43. Yang, X., Zhu, D., Yang, C., et al.: H-ACO with consecutive bases pairing constraint for
designing DNA sequences. Interdisciplinary Sciences: Computational Life Sciences, 1–15
(2024).

44. Deaton, R., Garzon, M.: Thermodynamic constraints on DNA-based computing. Computing
with Bio-Molecules, 138–152 (1998).

45. Zhu, X., Liu, W., Sun, C.: Research on the DNA words and algorithm. ACTA Electronica
Sinica 34(7), 1169 (2006).

46. Feldkamp, U., Rauhe, H., Banzhaf, W.: Software tools for DNA sequence design. Genetic
Programming and Evolvable Machines 4, 153–171 (2003).

47. SantaLucia Jr, J.: A unified view of polymer, dumbbell, and oligonucleotide DNA nearest-
neighbor thermodynamics. Proceedings of the National Academy of Sciences 95(4), 1460–
1465 (1998).

48. SantaLucia Jr, J., Hicks, D.: The thermodynamics of DNA structural motifs. Annual Review
of Biophysics and Biomolecular Structure 33(1), 415–440 (2004).

References 167

49. Arita, M., Nishikawa, A., Hagiya, M., et al.: Improving sequence design for DNA computing.
In: Proceedings of the 2nd Annual Conference on Genetic and Evolutionary Computation, pp.
875–882. Morgan Kaufmann Publishers, Las Vegas, USA (2000).

50. Kim, D., Soo-Yong, S., In-Hee, L., et al.: NACST/SEQ: A sequence design system with
multiobjective optimization. In: Proceedings of the 8th International Workshop on DNA-Based
Computers, pp. 242–251. Springer Berlin Heidelberg, Sapporo, Japan (2003).

51. Braich, R.S., Johnson, C., Rothemund, P.W., et al.: Solution of a satisfiability problem on a
gel-based DNA computer. In: Proceedings of the 6th International Workshop on DNA-Based
Computers, pp. 27–42. Springer Berlin Heidelberg, Leiden, Netherlands (2001).

52. Faulhammer, D., Cukras, A.R., Lipton, R.J., et al.: RNA solutions to chess problems.
Proceedings of the National Academy of Sciences 97(4), 1385–1389 (2000).

53. Feldkamp, U., Saghafi, S., Banzhaf, W., et al.: DNASequenceGenerator: A program for the
construction of DNA sequences. In: Proceedings of the 7th International Workshop on DNA-
Based Computers, pp. 23–32. Springer Berlin Heidelberg, Tampa, USA (2002).

54. Deaton, R., Chen, J., Bi, H., et al.: A software tool for generating non-crosshybridizing libraries
of DNA oligonucleotides. In: Proceedings of the International Workshop on DNA-Based
Computers, pp. 252–261. Springer Berlin Heidelberg, Sapporo, Japan (2002).

55. Zhang, B.-T., Shin, S.-Y.: Molecular algorithms for efficient and reliable DNA computing.
Genetic Programming 98, 735–742 (1998).

56. Deaton, R., Garzon, M., Murphy, R., et al.: Genetic search of reliable encodings for DNA-
based computation. In: Proceedings of the First Annual Conference on Genetic Programming,
pp. 421–427. MIT Press, Stanford, USA (1996).

57. Yang, G., Wang, B., Zheng, X., et al.: IWO algorithm based on niche crowding for DNA
sequence design. Interdisciplinary Sciences: Computational Life Sciences 9, 341–349 (2017).

58. Shin, S.-Y., Kim, D.-M., Lee, I.-H., et al.: Evolutionary sequence generation for reliable DNA
computing. In: Proceedings of the 2002 Congress on Evolutionary Computation, pp. 79–84.
IEEE, Honolulu, USA (2002).

59. Xiao, J., Jiang, Y., He, J., et al.: A dynamic membrane evolutionary algorithm for solving DNA
sequences design with minimum free energy. MATCH Commun. Math. Comput. Chem. 70(3),
971–986 (2013).

60. Khalid, N.K., Kurniawan, T.B., Ibrahim, Z., et al.: A model to optimize DNA sequences
based on particle swarm optimization. In: Proceedings of the 2008 Second Asia International
Conference on Modelling and Simulation, pp. 534–539. IEEE, Kuala Lumpur, Malaysia
(2008).

61. Reif, J.H., LaBean, T.H., Pirrung, M., et al.: Experimental construction of very large scale DNA
databases with associative search capability. In: Proceedings of the 7th International Workshop
on DNA-Based Computers, pp. 231–247. Springer Berlin Heidelberg, Tampa, USA (2002).

62. Liu, W., Chen, L., Bai, B., et al.: Research on optimizing the template frame in DNA
computing. ACTA Electronica Sinica 35(8), 1490–1494 (2007).

63. Liu, W., Zhu, X., Wang, X., et al.: A new method to optimize the template set in DNA
computing. Journal of Electronics and Information Technology 30(5), 1131–1135 (2008).

64. Wang, X., Liu, W., Zhu, X., et al.: Improving the single template method in DNA computing.
ACTA Electronica Sinica 37(12), 2720–2724 (2009).

65. Wu, J.-S., Lee, C., Wu, C.-C., et al.: Primer design using genetic algorithm. Bioinformatics
20(11), 1710–1717 (2004).

66. Kurniawan, T.B., Ibrahim, Z., Khalid, N.K., et al.: A population-based ant colony optimization
approach for DNA sequence optimization. In: Proceedings of the 2009 Third Asia International
Conference on Modelling and Simulation, pp. 246–251. IEEE, Bandung and Bali, Indonesia
(2009).

67. Mustaza, S.M., Abidin, A.F.Z., Ibrahim, Z., et al.: A modified computational model of ant
colony system in DNA sequence design. In: Proceedings of the 2011 IEEE Student Conference
on Research and Development, pp. 169–173. IEEE, Cyberjaya, Malaysia (2011).

168 5 DNA Coding Theory and Algorithms

68. Yakop, F., Ibrahim, Z., Abidin, A.F.Z., et al.: An ant colony system for solving DNA
sequence design problem in DNA computing. International Journal of Innovative Computing,
Information and Control 8(10), 7329–7339 (2012).

69. Zhu, D., Huang, Z., Liao, S., et al.: Improved bare bones particle swarm optimization for DNA
sequence design. IEEE Transactions on Nanobioscience 22(3), 603–613 (2022).

70. Zhang, W., Zhu, D., Huang, Z., et al.: Improved multi-strategy matrix particle swarm
optimization for DNA sequence design. Electronics 12(3), 547 (2023).

71. Chaves-González, J.M., Vega-Rodríguez, M.A., Granado-Criado, J.M.: A multiobjective
swarm intelligence approach based on artificial bee colony for reliable DNA sequence design.
Engineering Applications of Artificial Intelligence 26(9), 2045–2057 (2013).

72. Bano, S., Bashir, M., Younas, I.: A many-objective memetic generalized differential evolution
algorithm for DNA sequence design. IEEE Access 8, 222684–222699 (2020).

73. Duan, H., Zhang, K., Zhang, X.: A DNA coding design based on multi-objective evolutionary
algorithm with constraint. In: Proceedings of the 2023 7th International Conference on
Machine Learning and Soft Computing, pp. 40–45. IEEE, Chongqing, China (2023).

74. Zhang, X., Zhang, K., Wu, N., et al.: A two-stage constrained multi-objective evolutionary
algorithm for DNA encoding problem. In: Proceedings of the 2023 IEEE International
Conference on Systems, Man, and Cybernetics, pp. 548–555. IEEE, Maui, USA (2023).

75. Wu, H., Zhu, D., Huang, Z., et al.: Enhanced DNA sequence design with learning PSO.
Evolutionary Intelligence, 1–15 (2024).

76. Zhu, D., Wang, S., Huang, Z., et al.: A Jaya algorithm based on normal clouds for DNA
sequence optimization. Cluster Computing 27(2), 2133–2149 (2024).

77. Balinski, M.L.: Integer programming: methods, uses, computations. Management Science
12(3), 253–313 (1965).

78. Balas, E.: An additive algorithm for solving linear programs with zero-one variables. Opera-
tions Research 13(4), 517–546 (1965).

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Chapter 6
Enumerative DNA Computing Model

From 1994 to 2004, research in DNA computing was in its nascent stage, encom-
passing various aspects such as computational models, encoding, experimentation,
and detection. Notably, during this period, the computational models were primarily
enumerative in nature. These pioneering research outcomes not only laid the
foundation for the deeper exploration of DNA computing but also provided a solid
groundwork for RNA computing and, more broadly, the entire field of biological
computing. This chapter focuses on the enumerative DNA computing models,
selecting a subset of representative achievements for detailed introduction and in-
depth analysis.

6.1 DNA Computing Model for the Directed Hamiltonian
Path Problem

Let G. be a directed graph, v1 . and v2 . be two vertices of G.. If there exists a directed
path P . from v1 . to v2 . that visits every other vertex in G. exactly once, then P . is
called a directed Hamiltonian path from v1 . to v2 .. This definition is analogous to the
undirected Hamiltonian path in an undirected graph. It is well-known that finding
the directed Hamiltonian Path Problem (HPP) for a (directed) graph is a challenging
NP-complete problem. In 1994, Adleman first proposed a DNA computing model
to solve the directed HPP [1]. The basic idea of this model is outlined as follows.

1. A random oligonucleotide of length 20 is assigned to each vertex of the directed
graph. Based on this, a specific oligonucleotide of length 20 is associated with
each directed edge in the graph.

2. A suitable amount of ligase is added, and PCR amplification is employed to
obtain all directed paths from the starting point to the endpoint.

3. Electrophoresis is used to detect the required directed Hamiltonian path.

© The Author(s) 2025
J. Xu, Biological Computing, https://doi.org/10.1007/978-981-96-3870-3_6

169

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-96-3870-3protect T1	extunderscore 6&domain=pdf
https://doi.org/10.1007/978-981-96-3870-3_6
https://doi.org/10.1007/978-981-96-3870-3_6
https://doi.org/10.1007/978-981-96-3870-3_6
https://doi.org/10.1007/978-981-96-3870-3_6
https://doi.org/10.1007/978-981-96-3870-3_6
https://doi.org/10.1007/978-981-96-3870-3_6
https://doi.org/10.1007/978-981-96-3870-3_6
https://doi.org/10.1007/978-981-96-3870-3_6
https://doi.org/10.1007/978-981-96-3870-3_6
https://doi.org/10.1007/978-981-96-3870-3_6
https://doi.org/10.1007/978-981-96-3870-3_6

170 6 Enumerative DNA Computing Model

Fig. 6.1 The 7-order directed
graph used in Adleman’s
experiment

Adleman conducted experimental verification on the directed graph shown
in Fig. 6.1. The experiment lasted for a week and successfully determined the
Hamiltonian path from the specified starting point “0” to the endpoint “6”. This
pioneering achievement marked the beginning of a new era in computation, where
DNA molecules were used to perform calculations through biochemical reactions.
A brief overview of Adleman’s algorithm steps and the corresponding biochemical
experiments is presented below.

Without loss of generality, the theoretical algorithm steps for solving the HPP on
an n-order graph are as follows:

1. Randomly generate paths through the graph;
2. Only retain paths with vin . as the starting point and vout . as the end point;
3. Only retain paths with n. vertices;
4. Only retain paths that visit every vertex in the graph at least once;
5. If a path satisfying all the above conditions exists, output “YES”; otherwise,

output “NO”.

For each step of the above algorithm, Adleman accomplished the process through
biochemical reactions, as detailed below:

1. Biochemical experimental operation for the first step of the algorithm:

(a) Assign each vertex i . in the graph a random oligonucleotide S(i). of length
20. The direction of these oligonucleotide fragments is 5' → 3'

.. The Watson-
Crick complementary sequence of S(i). is denoted as S(i).. For example:

S(2).: TATCGGATCG GTATATCCGA
S(3).: GCTATTCGAG CTTAAAGCTA
S(4).: GGCTAGGTAC CAGCATGCTT
S(3).: TAGCTTTAAG CTCGAATAGC

(b) For each arc i → j . in the graph, construct an oligonucleotide S(i → j)..
The method is as follows: Divide the sequence of S(i). into two parts S1(i). and
S2(i)., where S1(i). is the first 10 bases of S(i)., and S2(i). is the last 10 base
sequence of S(i)..

6.1 DNA Computing Model for the Directed Hamiltonian Path Problem 171

Based on the above design, Adleman encoded each directed edge i → j .

in Fig. 6.1 into the corresponding oligonucleotide sequence S(i → j) =
S2(i)S1(j).. For example,

S(2 → 3). = GTATATCCGA GCTATTCGAG
S(3 → 2). = CTTAAAGCTA TATCGGATCG
S(3 → 4). = CTTAAAGCTA GGCTAGGTAC

(c) Generate paths. For each vertex and each arc in the graph, in a single ligation
reaction, take out 50 pmol of S(i). and 50 pmol of S(i →. j) and mix them
together; S(i).Nucleotides act as splints, connecting compatible arcs together,
so the final result of the ligation reaction leads to the production of DNA
molecules representing random paths of the corresponding graph.

. S(2 → 3) S(3 → 4)

. ↓

5'
.GTATATCCGA GCTATTCGAGCTTAAAGCTA GGCTAGGTAC 3'

.

3'
.CGATAAGCTCGAATTTCGAT 5'

.

. S(3)

(d) For each directed edge in the graph, approximately 3 × 1013 . copies (about
50 pmol) are required to be added to the ligation reaction. Therefore, if a
Hamiltonian path exists, DNA molecules encoding the directed Hamiltonian
path will inevitably be generated.

2. Biochemical experimental operation for the second step of the algorithm:
Using the product of the first step as a template, PCR amplification is per-

formed using S(0). andS(6).as primers. The resulting DNA molecules represent
all path sets starting from 0 and ending at 6.

3. Biochemical experimental operation for the third step of the algorithm:
The product of the second step is subjected to gel filtration chromatography,

and all DNA molecules containing 140 base pairs are separated, which represents
paths with exactly 7 vertices. Soak these DNA molecules in double-distilled
water (ddH2O .) for extraction. The resulting product is amplified by PCR, filtered
by agarose gel, and purified several times to further increase the purity and
proceed to the next step.

4. Biochemical experimental operation for the fourth step of the algorithm:
The product of the third step is subjected to affinity chromatography using a

magnetic bead separation system. First, the double-stranded DNA is denatured
and unwound into various single-stranded DNA, and then the single-stranded
DNA in the test tube is incubated with S(1). bound to magnetic beads. Only those
single-stranded DNA molecules that contain the sequence S(1)., which encodes

172 6 Enumerative DNA Computing Model

vertex 1 at least once, are retained. Subsequently, the above steps are repeated in
sequence with S(2). , S(3)., S(4)., and S(5). bound to magnetic beads.

5. Biochemical experimental operation for the fifth step of the algorithm:
The product of the fourth step is used as a substrate for PCR amplification and

gel electrophoresis analysis, and DNA chains containing all vertices are screened
out to obtain the solution to the problem.

The above content details the DNA computing model created by Adleman for
solving the directed Hamiltonian path problem of directed graphs. Based on this
model, our research group has further established a DNA computing model for the
weighted Hamiltonian path problem (including both directed and undirected types).
This will not be detailed here, interested readers can refer to Reference [19].

6.2 DNA Computing Model of Satisfiability Problem

Definition 6.1 Suppose A = {x1, x2, L, xn}.is a set of Boole variables. A clause is
a formula C = b1 ∨ b2 ∨ · · · ∨ bk .. The symbol ∨. represents the logic “or”, and each
bi . is a variable in A. or the negation of a variable in A. The negation of the element
xi . in A is represented by the symbol xi .. A propositional formula can be seen as a
formula composed of the “and” of several clauses: F = C1 ∧ C2 ∧ · · · ∧ Cr .. Each
Ci . is a clause, and the symbol ∧. represents the logic “and”.

The satisfiability problem aims to find the set of solutions that satisfy the logical
formula F = 1.. Obviously, this problem is an NP-complete problem. Currently,
there are many models for SAT (satisfiability problem) based on DNA computing.
Here, we will focus on the work achievements made by Lipton [16] in 1995 and
Braich et al. [3] in 2002. For other related models, please refer to Reference [18].

In 1995, Lipton [16] imitated Adleman’s method and gave a DNA computing
model for the satisfiability problem (SAT problem). The basic idea of this model is:
let each feasible solution of the SAT problem correspond to an n. bit binary number,
construct a simple contact network Gn ., and correspond the n-bit binary data pool to
the directed path from the starting point a1 . to the end point an+1 . in the network Gn ..
Then, construct a DNA data pool using the “Watson-Crick” method, and use four
basic molecular biology technologies to obtain all solutions to the SAT problem.

Lipton’s basic idea is as follows:

1. If a formula F = C1 ∧ C2 ∧ · · · ∧ Cr . contains k . variables, then all k .- bit DNA
molecule strings are formed and put into a test tube t0 .;

2. For each clause C = b1 ∨ b2 ∨ · · · ∨ bm . (m ≤ k ., i = 1, 2, . . . , r .), and j =
1, 2, . . . , k ., extract the k . bits where the bj .-bit is 1 from the test tube ti−1 . (that is,
if bj = x ., then the value of the bj . bit is 1; if bj = x ., then the value of the bj . -bit
is 0). Combine all clauses in the test tube ti .;

6.2 DNA Computing Model of Satisfiability Problem 173

3. If there is DNA in the final test tube tr ., the answer is “YES”, otherwise it is
“NO”.

Next, we will give a more detailed description of Lipton’s specific calculation
steps.

1. The vertices and directed edges are encoded in the same way as Adleman: that
is, both vertices and edges are 20 bp in length. For any vertex i ., it is represented
by piqi ., where pi . and qi . are the sequences of the first 10 bp and the last 10 bp
of the DNA molecule representing vertex i .; for any directed edge i → j ., it is
represented by piqi .. The DNA molecules encoding vertices and edges are put
into the initial test tube t0 .. After sufficient reaction, DNA molecules representing
various directed paths in the graph G.will be formed.

2. Using pa1 . and qa3 . as primers to search for directed paths starting with a1 . and
ending with a3 . in the test tube t0 ., so there are only DNA molecules representing
the above 4 paths left in t0 ..

3. Search for the DNA molecule with the first bit as 1 (x = 1.) from test tube t0 . and
put it into test tube t1 ., the rest are put into test tube t1'

.; then search for the DNA
molecule with the second bit as 1 (y = 1) from test tube t1'

. and put it into test
tube t2 .; combine test tubes t1 . and t2 . into t3 . to get the DNA molecules that satisfy
the first clause.

4. Search for the DNA molecule with the first bit as 0 (x = 1.) from test tube t3 . and
put it into test tube t4 ., the rest are put into test tube t4'

.; then search for the DNA
molecule with the second bit as 0(y = 1.) from test tube t4'

. and put it into test
tube t5 .; combine test tubes t4 . and t5 . into t6 . to get the DNA molecules that satisfy
the second clause.

5. Check test tube t6 ., if there are DNA molecules, they are the solution to the SAT
problem; otherwise, the problem has no solution.

Lipton’s main contribution is that he translated the base pairs on the DNA
molecule into a string of 1s and 0s. Then, he took the DNA molecules with
predetermined sequences from different test tubes and mixed them, enabling them to
mimic electronic gates for making ‘yes’ or ‘no’ judgments. In other words, he gave
DNA the ability to “think” and make logical judgments. Recently, Faulhammer et
al. [8] implemented Lipton’s design using biotechnology in experiments.

In 1999, Landweber et al. [6] proposed a “destructive” SAT problem algorithm
based on RNA by using the property of RNA enzyme H to specifically recognize
and hydrolyze RNA sequences that are completely complementary to DNA. This
algorithm operates by using RNA enzyme H to eliminate solutions in the search
space that do not satisfy the given conditions. In 2000, Sakamoto et al. [23] from
Tokyo University cleverly used the “hairpin” structure of single-stranded DNA
molecules to encode the constraints of logical operations in DNA molecules, and
solved a 3-SAT problem through the self-assembly process of DNA molecules
(i.e., forming a “hairpin” structure). In 2003, Liu Wenbin et al. proposed a new
algorithm for solving 3-SAT problems based on DNA computing on the basis of

174 6 Enumerative DNA Computing Model

Sakamoto’s research [18]. The improved algorithm they proposed based on the text
string strategy has the following advantages:

1. The maximum number of text strings generated during the calculation process is
greatly reduced;

2. The length of the text string is reduced;
3. The main operation of this algorithm is extraction and synthesis.

In 2000, Liu et al. [17] proposed a algorithm for the SAT problem based on surface
computing and successfully validated the SAT instance (w ∧ x ∧ y) ∨ (w ∧ y ∧
z) ∨ (x ∧ y) ∨ (w ∧ y). through experimental implementation. The method can
be simply described as: a group of single-stranded DNA molecules represent all
possible solutions, a given computational problem is synthesized (“manufactured”)
and “fixed” on the surface, and the combination mixture of subsets is supplemented
with “tags” in each N .continuous cycle of DNA computation by the active functional
group x, making them form double strands. After the “tagging” operation, an
enzyme (for example, E. coli exonuclease I) is added, which can “destroy” the
surface-bound oligonucleotides that exist in the form of unhybridized single strands
(“destruction”). Then all hybrid chains are removed in the “untagging” operation.

In 2001, Wu [28] proposed a new improved algorithm for the SAT problem
based on surface computing on the basis of Reference [17]. This algorithm has the
following features:

1. The number of unique oligonucleotides that need to be synthesized is reduced
from 2n

. to 4n., where n. is the number of variables, reducing the cost.
2. Only three oligonucleotides need to be added, which greatly saves operation

time.
3. The surface is reusable, because after the “untagging” operation, the surface is

regenerated into a new surface.
4. The final result can be obtained without PCR amplification and then hybridiza-

tion to an address array.

Plasmid DNA molecules are a type of circular superhelical structure. Reference
[10] proposed to use plasmid DNA molecules to solve the SAT problem. In 2000,
Faulhammer et al. [7] replaced DNA molecules with RNA molecules to provide an
experimental computational model for the SAT problem, and discussed the RNA
computational model of the chess problem.

In 2002, Braich et al. [3] applied the Sticker model to provide a DNA com-
putational model for the SAT problem with 20 variables, and achieved success
through biochemical experiments. Braich et al. proposed a DNA computing device
and called it a DNA computer. On this DNA computer, they used a 3-SAT problem
with 20 variables as an example for solving. After a brute force search of 1 million
(220 .) possibilities, they found its unique answer .

The basic idea of this model is related to the paste model proposed by
Roweis et al. [22]. The paste model includes two basic computational operations:
separation and pasting operations based on sub-sequences (this study focuses solely

6.2 DNA Computing Model of Satisfiability Problem 175

on the separation operation). Initially, the researchers filled glass modules with
polyacrylamide gel and fixed oligonucleotide probes (single-stranded DNA) in
the glass modules to achieve separation. The DNA strands carrying information
move in the module through electrophoresis, and the DNA strands complementary
to the fixed probe sequence are captured and retained in the module, while the
non-complementary DNA strands pass through the module relatively freely. Subse-
quently, electrophoresis is performed again at a temperature higher than the melting
temperature of the double-stranded body composed of the probe-DNA information
chain, and the captured DNA chain can be released. During the separation process,
covalent bonds are neither formed nor broken, and the DNA chain and glass module
can be used for calculation multiple times.

The detailed algorithm steps are as follows [3]:

1. All variable truth values are represented using Lipton encoding. For each of the
20 variables, two different 15 bp “value sequences” XZ

K(k = 1 . . . 20, Z ∈
{T , F }). are used to represent xk(k = 1 . . . 20). : one represents “true” (T ,XT

K).,

and the other represents “false”, (F,XF
K). . X

Z

K . represents the Watson-Crick
complementary sequence of XZ

K . .
2. Construction and detection of library chains. Each truth value assignment is

represented by a 300 bp “library sequence”. The library sequence is formed by
the ordered connection of a value sequence of each variable. Single-stranded
DNA molecules with library sequences are called “library chains”. The set of all
library chains and their complementary chains is called a “complete library”.
Two “half-libraries” are created first and then combined to form a complete
library. The left half-library is used for x1 . to x10 ., and the right half-library is
used for x11 . to x20 . . After the construction of the library chain is completed, a
“capture layer” is created by adding the corresponding acrylate-modified probe
to the polyacrylamide gel to test the library chain. For each probe, about half
of the chains in the half-library are captured, and about half of the chains pass
through. The results show that for each variable, the number of half-library
chains representing the truth value as “true” is roughly equal to the number of
half-library chains representing the truth value as “false”. Subsequently, PCR
technology is further used to prove that the expected position of each variable in
the library chain is correct.

3. Non-solution deletion, which specifically includes the following four operation
steps:

Step one: Insert the library module into the hot chamber of the electrophoresis box,
and insert the first clause module into the cold chamber of the electrophoresis box.
In the hot chamber, the library chains in the library module are unchained with
the acrylate-modified probe chains and migrate to the cold chamber where the first
clause module is located. The library chains that satisfy the truth value assignment
of the first clause are captured in the capture layer, while the library chains that
encode the unsatisfied assignment pass through the capture layer and continue into
the buffer library. For example, library chains with sequences XF

3 . , XF
16 . or XT

18 . are

176 6 Enumerative DNA Computing Model

retained in the capture layer, while those with sequences XT
3 . , XT

16 . or XF
18 . pass

through the capture layer.
Step two: Replace the calculation module of the cold and hot chambers, insert

the module in the cold chamber into the hot chamber, insert the next clause module
into the cold chamber, and repeat the first step.

Step three: Repeat the above steps for the remaining 22 clauses. At the end
of the calculation, the final clause module (the 24th clause module) will contain
those library chains captured in all 24 clause modules, which are the truth value
assignments that satisfy each clause of Φ . and the truth value assignment of formula
Φ ..

Step four: Extract the solution chain from the last clause module, perform PCR

amplification, and “read” the solution. Use primer group lXT
1 , X

T

K l, lXT
1 , X

F

K l,.
lXF

1 , X
T

K l, lXF
1 , X

F

K l. (k = 2, 3 . . . 20.) to amplify each k .value, and the correspond-
ing gel electrophoresis shows that there is only one primer combination with the
expected length of the band. According to the band information, the truth value of
each variable is obtained. The truth value of each variable obtained in the experiment
is the only solution to formula Φ ..

6.3 DNA Computing Model of the Maximum Clique and
Maximum Independent Set Problem of the Graph

Definition 6.2 Let G.be a simple graph, and S .be a non-empty vertex subset of G.. If
the induced subgraph G[S]. of S . in G. is a complete subgraph (complete null graph)
of G., then S . is a clique (independent set) of G.. Let S . be a clique of graph G., if for
any clique (independent set) S'

. in graph G., |S'| ≤ |S|., Then S . is called a maximum
clique (maximum independent set) of graph G.. Obviously, if S . is a maximum clique
of graph G., then S . is the maximum independent set of the complement G.graph of G.

. Therefore, the problems of finding a maximum clique and a maximum independent
set in a graph are equivalent.

The problems of maximum clique and maximum independent set in a graph
belong to the difficult NP-complete problems. They not only have direct or indirect
applications in the field of engineering technology, but also have good applications
in mathematical theory itself, such as the famous Ramsey number problem [32]
and so on. Therefore, it is of great significance to provide a fast and accurate
algorithm for the maximum clique or maximum independent set of a graph. There
are many research results in this area, such as conventional algorithms, neural
network algorithms, and genetic algorithms [11, 29, 33]. However, these algorithms
are designed with electronic computers as tools, so it is difficult to make substantial
breakthroughs.

In 1997, Ouyang et al. [20] proposed a DNA solution to the problem of finding
the maximum clique of a graph, imitating Adleman’s method. The basic idea

6.3 DNA Computing Model of the Maximum Clique and Maximum. . . 177

is: first, a clique corresponds to a binary 0-1 sequence, and then a n-bit binary
sequence corresponds to a DNA sequence with a length of n > 30.. By applying the
relationship between the graph and its complement, a DNA solution to the problem
of finding the maximum clique of a graph is given. And a biochemical experiment
of DNA calculation was carried out on a graph with 6 vertices, and it was successful.
Below, we will briefly introduce Ouyang’s work.

The algorithm steps to solve the maximum clique problem of a graph are as
follows:

1. For a graph G. with n. vertices, each possible clique is represented by a n.-bit
binary number.

2. Construct the complement G. graph of G. .
3. Remove all numbers corresponding to vertices connected by an edge in the

complement graph from the complete data pool.
4. Classify the remaining data pool and find the data with the most number of 1s.

Each 1 in these data represents one vertex in the corresponding clique. Therefore,
the data with the most number of 1s tells us the size of the maximum clique.

In addition to the computational model of Ouyang et al., in 2000, Head et al. [10]
conducted experiments using their established plasmid DNA computational model.
And compared this model with the work of Ouyang et al. in the paper. It pointed out
that the application of plasmid DNA computation to solve the maximum clique and
maximum independent set problems of graphs is superior to the double-stranded
DNA computational model of Ouyang et al.

In 2002, Pan [21] proposed a DNA computational model for the maximum clique
problem of a graph based on surface computation. The features of this model are:
When the sample is fixed on a solid surface instead of in a solution, the sample
handling is simpler and easier to automate; This model greatly reduces the loss
of DNA strands in chemical operations, thereby reducing the error rate of DNA
computation.

In 2012, Wang et al. [26] proposed a DNA self-assembly model for solving
the maximum weighted independent set problem. This model mainly consists of
two parts: a non-deterministic search system and an addition system. In the non-
deterministic search system, each vertex is encoded as input, and all independent
sets that meet the definition are identified according to the adjacency matrix of the
graph. In the addition system, the total weight of each independent set is calculated
by adding the weights of the vertices of each independent set, and finally the
maximum weighted independent set is determined.

In 2013, Li [14] proposed a closed-loop DNA algorithm for the maximum
weighted independent set problem based on the closed-loop DNA computational
model and its biochemical experiments. In this algorithm, all independent sets are
obtained first through appropriate coding and deletion experiments, and then the
maximum weighted independent set is found through electrophoresis experiments
and detection experiments.

In 2018, Yin et al. [5] were inspired by DNA origami nanotechnology and
proposed to search for the maximum clique in an undirected graph with 6 vertices

178 6 Enumerative DNA Computing Model

and 11 edges. First, a unique type of scaffold is folded into a chain pool of n hairpin
structures, or for convenience, this corresponds to a collection of 6 vertex cliques.
Then, the scaffold is refolded with nails, and a series of selection processes are
carried out according to the edges in the complementary graph. The scaffold of the
correctly coded small clique is selected by gel electrophoresis. When this selection
process ends, all cliques are found. By unfolding all the hairpins in the clique at
the same time, and then performing gel electrophoresis, the scaffold with the largest
number of hairpins in the clique is selected. Then, by unfolding the chain one by one
to perform a series of unfolding of the hairpins outside the clique, it is determined
whether each vertex in the given graph is in the maximum clique. When the decision
process ends, the maximum clique in the given graph will be found. Our work shows
that NP problems can be easily and reliably solved by using DNA origami through
simple design of scaffolds, nails, and unfolding chains. This work further expands
the application field of DNA origami technology.

6.4 DNA Computing Model for the 0-1 Programming
Problem

0-1 programming is a special case of integer programming, where the variable xi .

only takes the values 0 or 1, at which point xi . is called a 0-1 variable, or a binary
variable. The application of 0-1 programming problems is very widespread. There
are many algorithms for it, such as exhaustive method, implicit enumeration method,
etc., but so far there is no good algorithm [34]. In 2018, Professor Yin Zhixiang’s
team [25] proposed a cyclic DNA model for the 0-1 programming problem based
on DNA strand displacement on the previous basis. This model is based on circular
DNA and contains multiple DNA recognition areas and small protection areas. It
has higher recognition accuracy and more flexible structure than the normal DNA
model. In Reference [25], the authors use DNA computation to solve the following
special 0-1 programming problem,

. max(min)z = c1x1 + c2x2 + · · · + cnxn

.

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

a11x1 + a12x2 + · · · + a1nxn ≤ (=,≥)b1

a21x1 + a22x2 + · · · + a2nxn ≤ (=,≥)b2
...

am1x1 + am2x2 + · · · + amnxn ≤ (=,≥)bm

Where xj . and aij . are 0 or 1, bi . and cj . are non-negative integers.
The algorithmic steps for the 0-1 programming problem given in Reference [25]

are as follows:

6.4 DNA Computing Model for the 0-1 Programming Problem 179

Step 1: Generate all possible combinations of variable values of 0 or 1 for the
given problem;
Step 2: Use each constraint to eliminate infeasible solutions (retain feasible
solutions);
Step 3: Generate the remaining solutions;
Step 4: Repeat steps 2 and 3 until all non-solutions are deleted to obtain all
feasible solutions to the problem;
Step 5: Compare the objective function values corresponding to each feasible
solution to obtain the optimal solution.

The corresponding biological experimental operation steps of the above algo-
rithm are briefly described as follows:

Step 1: For a system of equations with n. variables x1, x2, . . . , xn . and m.

equations, we first synthesize 4n. short oligonucleotides. We divide it into 4
groups, the n oligonucleotides in the first group correspond to the variables
x1, x2, . . . , xn ., respectively; the n. oligonucleotides in the second group corre-
spond to the variables x1, x2, . . . , xn ., respectively; the n oligonucleotides of
the third group are the complementary chains corresponding to the first group,
and are respectively denoted as x1

', x2', . . . , xn
'
. ; the n. oligonucleotides of the

fourth group are the complementary chains corresponding to the second group,
and are respectively represented as x1

', x2
', . . . , xn

'
. . In order to avoid their

erroneous hybridization, the selected first two groups of oligonucleotides should
have a large difference, at least 4 or more are different (note that here the
oligonucleotide corresponding to xi . represents the variable xi . taking the value
1, the oligonucleotide corresponding to xi . represents the variable xi . taking the
value 0).
Step 2: Connect the DNA single strands representing each variable xi . to form
a circular DNA single strand. Then use the 2n. oligonucleotides of the first two
groups to construct 2n

.DNA chains (all possible solutions of the variables).
Step 3: Put the constructed circular DNA chain into a test tube, and then put the
constructed DNA single strand group into the step 2 test tube for DNA chain
displacement reaction.
Step 4: By detecting the fluorescence amount after the reaction, the feasible
solution satisfying the constraint equation is obtained.
Step 5: Repeat steps 2 and 3, we can obtain chains that satisfy all constraint
equations.
Step 6: Calculate the objective function values corresponding to all feasible
solutions and select the optimal solution.

Subsequently, Reference [24] proposed a model for the 0-1 integer programming
problem based on the DNA chain displacement reaction network. This model uses
the DNA chain displacement reaction as the basic principle and designs three
chemical reaction modules, namely the weighted reaction module, the sum reaction
module, and the threshold reaction module. These modules serve as the basic
elements of the chemical reaction network and can be used to solve the 0-1 integer
programming problem.

180 6 Enumerative DNA Computing Model

6.5 DNA Computing Model for the Graph Vertex Coloring
Problem

Definition 6.3 Let G(V,E). be a simple undirected graph, where V . is the point set
of G(V,E). , and E . is the edge set of G(V,E). . The vertex coloring of a graph G.

refers to the assignment of a color to each vertex in G. so that adjacent vertices are
colored differently. In other words, it is a partition of the vertex set V (G). of the
graph G.:

. V (G) = V1 ∪ V2 ∪ · · · ∪ Vk, Vi ll= ∅, Vi ∩ Vj = ∅, i = 1, 2 . . . , k

The minimum number of colors required for a normal coloring of graph G. is
called the chromatic number, denoted asX(G).. A k-normal vertex coloring of graph
G. , also known as a k-vertex coloring of the graph, refers to coloring the graph G.

with k(k ≥ X(G)). colors.
The graph coloring problem is a difficult combinatorial optimization problem

with good application backgrounds, such as operation problems, scheduling prob-
lems, register allocation problems, etc., all have direct applications [2, 4] . Here we
introduce it with an example of our research team’s early research results [9].

For a graph with n vertices, each possible 3-vertex coloring scheme of the graph
can be represented as an n-digit number string composed of 0, 1, and 2, where 0, 1,
and 2 represent three colors respectively. The set of all possible coloring schemes of
a graph with n vertices, transformed into an n-digit number string composed of 0, 1,
and 2, is called a complete data pool. The theoretical algorithm steps are as follows:

Step 1: Encode the operation object and establish a complete data pool. Use the
established complete data pool as the input data for DNA molecular computation.
The encoding of each vertex consists of three parts, as shown in Fig. 6.2. The
first segment Pi . and the third segment Pi+1 . represent positions. The purpose
is to further generate a complete data pool. The middle part Vi . represents the
encoding of the colors of each vertex. For each vertex, Vi . has different encodings
to represent different colors. And this part of the encoding uses oligonucleotide
sequences with special enzyme cutting sites for solution separation.
Step 2: Search the data in the complete data pool and retain the data set that meets
the coloring conditions.
Step 3: Provide the calculation results.

Fig. 6.2 Vertex encoding schematic

6.5 DNA Computing Model for the Graph Vertex Coloring Problem 181

The following are the specific implementation steps:

Step 1: Establish a data pool, represent the data structure with double-stranded
DNA, use i . to represent the position, when i . is odd, it is represented as
PiV

m
i Pi+1(m = 0, 1, 2)., when i . is even, it is represented as Pi+1V

m
i Pi . . In

order to effectively identify different colors of vertices, a restrictive sequence
with special enzyme cutting sites must be added to distinguish the colors of
vertices. Use parallel overlapping technology to establish a data pool.
Step 2: According to the definition of graph coloring, use restriction endonu-
cleases to screen the DNA strings in the data pool. If 1 and 2 are two adjacent
vertices in the graph, it is necessary to delete the DNA strings that represent
vertices 1 and 2 of the same color. The deletion operation process is explained
with the example of vertices 1 and 2 both being 0. First, divide the data in the data
pool into two test tubes t1 . and t2 .. In t1 ., use EcoRI to cut the string containing V 0

1 .,
and in t2 ., use KpnI to cut the string containing V 0

2 .. Then merge the liquids in the
two test tubes into test tube t ., which does not contain data strings where vertices
1 and 2 are both 0. Repeat the above operation until the non-solution deletion is
completed.
Step 3: Use polyacrylamide gel electrophoresis to identify the enzyme cutting
products after the above operation is completed, and sequence the DNA chains.
The coloring of each vertex is obtained according to the sequencing results.

In addition to using restriction endonucleases to delete non-solutions, a probe-
magnetic bead separation technology has also been proposed to delete non-solution
DNA computing models [31], and an experimental verification was completed using
a 5-order graph as an example (Fig. 6.3).

The specific implementation steps are as follows:

Step 1: Encoding. For each vertex i ∈ V (G). of graph G. , let ri, bi, yi . represent
the vertex i . colored red, blue, and yellow respectively, and xi . , xi ∈ {ri, bi, yi}. ,
are single-stranded oligonucleotide sequences containing l . bases, and generate
corresponding probe sequences based on these encodings. The probe library
composed of these probe sequences is used to delete the non-solutions of graph
G. ;
Step 2: Synthesize the initial solution space. According to the marking order of
graph G. , synthesize DNA chains representing all possible solutions to represent
all possible 3-vertex coloring schemes of graph G. . This initial solution space
should contain 3n

. DNA sequences, and each sequence is n × l . in length. At

Fig. 6.3 A 5-order graph and
one of its coloring schemes

182 6 Enumerative DNA Computing Model

the same time, synthesize probe sequences (biotin-labeled) for deleting non-
solutions;
Step 3: Delete non-solutions. For those that do not meet the normal coloring
conditions of graph G., hybridization with the single-stranded DNA in the initial
solution space using a probe deletes the DNA strands that do not satisfy the
normal 3-coloring of the graph, while retaining the remaining solutions;
Step 4: Repeat step 3, continue to exclude non-solutions, thereby retaining the
DNA strands that represent solutions to the given problem;
Step 5: Use polymerase chain reaction to detect the solution.

In addition, in 1999, Jonoska et al. [12] theoretically described a general program
to solve graph coloring problems and other computational problems through the
self-assembly of complex molecular structures. They represent each k-degree
vertex in the graph G as a k-arm DNA molecule subunit, these branched DNA
molecules are called vertex building blocks. In addition to representing vertices,
2-arm structures are usually used for edge building blocks.

In 2009, Wu et al. [27] experimentally implemented a solution to the 3-
coloring problem of a 6-order graph based on this. They encode vertices through
branched DNA molecular structures and connect them to form a graph. Add specific
restriction endonuclease sequences in the encoding to delete non-solutions.

In 2010, Lin et al. [15] proposed a non-deterministic graph vertex coloring
algorithm, which ensures that under certain non-deterministic choices, a suitable
vertex coloring scheme can be obtained. First, by separating adjacent information
and coloring information, the input of the algorithm is obtained. Then, two reference
tables are introduced: adjacency table and coloring table. The adjacency table is
used to indicate the adjacency relationship of vertices in the graph, and the coloring
table is used to assist in designing self-assembling components. Finally, based on
the designed components, the non-deterministic algorithm is simulated through the
self-assembly model. In the self-assembly process, possible coloring schemes are
gradually constructed according to the characteristics and rules of the components,
until a vertex coloring scheme that meets the conditions is found.

The algorithm is described as follows:
Non-Deterministic Algorithm (G, f).

(1) For each Vi ∈ V (G). {.
(2) Color for Vi : f (i) → {r, b, y}.
(3) Check all (Vi, Vj) ∈ E(G). if exist f (i) = f (j).

(4) Break and return failure
(5) }.
(6) If all Vi ∈ V (G). are colored
(7) Return success and output f (G).

(8) Else return failure

Many researchers have studied the molecular computing model for solving the
graph coloring problem from different perspectives, such as the computing model
for solving the graph coloring problem using DNA quantum dots [13], and the self-

References 183

assembly computing model for the graph vertex coloring problem [30, 35] etc. We
do not repeat them one by one in this book, and interested readers can refer to the
corresponding literature for more details about these models.

References

1. Adleman, L.M.: Molecular computation of solutions to combinatorial problems. Science
266(5187), 1021–1024 (1994).

2. Berge, C.: Graphs and hypergraphs. North-Holland Pub. Co. (1973).
3. Braich, R. S., Chelyapov, N., Johnson, C., et al.: Solution of a 20-variable 3-sat problem on a

dna computer. Science 296(5567), 499–502 (2002).
4. Chaitin, G. J.: Register allocation & spilling via graph coloring. ACM Sigplan Notices 17(6),

98–101 (1982).
5. Cui, J., Yin, Z., Yang, J., et al.: Searching for maximum clique by dna origami. In: 2018 14th

International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery
(ICNC-FSKD), pp. 167–172. IEEE, Huangshan, China (2018).

6. Cukras, A. R., Faulhammer, D., Lipton, R. J., et al.: Chess games: a model for rna based
computation. Biosystems 52(1–3), 35–45 (1999).

7. Faulhammer, D., Cukras, A. R., Lipton, R. J., et al.: Molecular computation: RNA solutions to
chess problems. Proceedings of the National Academy of Sciences 97(4), 1385–1389 (2000).

8. Faulhammer, D., Lipton, R. J., Landweber, L. F.: Counting DNA: estimating the complexity of
a test tube of DNA. Biosystems 52(1–3), 193–196 (1999).

9. Xu, J., Gao, L.: DNA algorithm for vertex coloring of graphs. Journal of Electronics 31(4),
494–497 (2003).

10. Head, T., Rozenberg, G., Bladergroen, R. S., et al.: Computing with DNA by operating on
plasmids. Biosystems 57(2), 87–93 (2000).

11. Holland, J. H.: Adaptation in natural and artificial systems: an introductory analysis with
applications to biology, control, and artificial intelligence. MIT press (1992).

12. Jonoska, N., Karl, S. A., Saito, M.: Three dimensional DNA structures in computing.
BioSystems 52(1–3), 143–153 (1999).

13. Li, J., Song, Z., Zhang, C., et al.: A molecular computing model for graph coloring problem
using DNA quantum dot. Journal of Computational and Theoretical Nanoscience 12(7), 1272–
1276 (2015).

14. Li, Q., Yin, Z., Chen, M.: Closed circle dna algorithm of maximum weighted independent set
problem. In: Proceedings of The Eighth International Conference on Bio-Inspired Computing:
Theories and Applications (BIC-TA), pp. 113–121. Springer Berlin Heidelberg, Huainan,
China (2013).

15. Lin, M., Xu, J., Zhang, D., et al.: 3D DNA self-assembly model for graph vertex coloring.
Journal of Computational and Theoretical Nanoscience 7(1), 246–253 (2010).

16. Lipton, R. J.: DNA solution of hard computational problems. Science 268(5210), 542–545
(1995).

17. Liu, Q., Wang, L., Frutos, A. G., et al.: DNA computing on surfaces. Nature 403(6766), 175–
179 (2000).

18. Liu, W., Gao, L., Liu, X., et al.: Solving the 3-SAT problem based on DNA computing. Journal
of Chemical Information and Computer Sciences 43(6), 1872–1875 (2003).

19. Liu, X. J., Liu, W. B.: DNA computing model of weighted Hamiltonian path problem. Systems
Engineering and Electronics 24(6), 99–102 (2002).

20. Ouyang, Q., Kaplan, P. D., Liu, S., et al.: DNA solution of the maximal clique problem. Science
278(5337), 446–449 (1997).

184 6 Enumerative DNA Computing Model

21. Pan, L., Xu, J.: A surface-based DNA algorithm for the maximal clique problem. Chinese
Journal of Electronics 11(4), 469–471 (2002).

22. Roweis, S. T., Winfree, E., Burgoyne, R., et al.: A sticker based model for DNA computation.
In: DNA Based Computers, pp. 1–29. Citeseer, Princeton, USA (1996).

23. Sakamoto, K., Gouzu, H., Komiya, K., et al.: Molecular computation by DNA hairpin
formation. Science 288(5469), 1223–1226 (2000).

24. Tang, Z., Yin, Z., Wang, L., et al.: Solving 0–1 integer programming problem based on DNA
strand displacement reaction network. ACS Synthetic Biology 10(9), 2318–2330 (2021).

25. Tang, Z., Yin, Z., Yang, J., et al.: The circular DNA model of 0–1 programming problem based
on DNA strand displacement. In: 2018 14th International Conference on Natural Computation,
Fuzzy Systems and Knowledge Discovery (ICNC-FSKD), pp. 173–177. IEEE, Huangshan,
China (2018).

26. Wang, Y., Bai, X., Wei, D., et al.: DNA self-assembly for maximum weighted independent set
problem. Advanced Science Letters 17(1), 21–26 (2012).

27. Wu, G., Jonoska, N., Seeman, N. C.: Construction of a DNA nano-object directly demonstrates
computation. Biosystems 98(2), 80–84 (2009).

28. Wu, H.: An improved surface-based method for DNA computation. Biosystems 59(1), 1–5
(2001).

29. Xu, J., Bao, Z.: Neural networks and graph theory. Science in China Series F: Information
Sciences 45, 1–24 (2002).

30. Xu, J., Chen, C., Shi, X.: Graph computation using algorithmic self-assembly of DNA
molecules. ACS Synthetic Biology 11(7), 2456–2463 (2022).

31. Xu, J., Qiang, X., Fang, G., et al.: A DNA computer model for solving vertex coloring problem.
Chinese Science Bulletin 51, 2541–2549 (2006).

32. Xu, J., Wong, C. K.: Self-complementary graphs and Ramsey numbers Part I: the decomposi-
tion and construction of self-complementary graphs. Discrete Mathematics 223(1–3), 309–326
(2000).

33. Bao, Z., Xu, J.: Neural networks and graph theory. Chinese Science (E edition) 31(6), 533–555
(2001).

34. Xu, J., Yin, Z., Zhang, F.: DNA computation model of 0-1 programming problem. Journal of
Electronics and Information Technology 25(1), 62–66 (2003).

35. Zhang, X., Niu, Y., Cui, G., et al.: Application of DNA self-assembly on graph coloring
problem. Journal of Computational and Theoretical Nanoscience 6(5), 1067–1074 (2009).

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Chapter 7
Non-enumerative DNA Computation
Model for Graph Vertex Coloring

The previous chapter introduced the enumerative DNA computation model for
solving NP-complete problems, but with the increase of problem size, the amount
of DNA molecules in the generated initial solution space will inevitably show an
“exponential explosion”. Roughly estimated, for solving the 4-coloring problem of
a graph of order 200, the solution space built upon the enumeration approach would
contain 4200 . potential solutions. Assuming that a DNA sequence representing a
vertex is 50 bases in length, then the entire DNA molecule representing the feasible
solution of this problem would be 10,000 bases long. This makes the mass of the
DNA molecules in the solution space far exceed the mass of the Earth. Sakamoto
et al. put forward a hairpin DNA computing model in the reference [1], indicating
that for solving larger—scale SAT problems, it is essential to improve the encoding
method. This improvement aims to reduce the number of DNA molecules needed,
meaning that a non-enumerative DNA computing model ought to be established.
The reference [2] first proposed a non-enumerative DNA computing model for
solving graph vertex coloring problems. In this chapter, we will introduce this model
in detail with permission from IEEE Transactions on NanoBioscience, Jin Xu, “An
Unenumerative DNA Computing Model for Vertex Coloring Problem”, 2011; all
rights reserved.

7.1 Basic Idea of The Non-enumerative DNA Computing
Model

In this DNA computing model, the encoding problem and the initial solution
space problem are jointly considered. The encoding scheme and the construction
of the initial solution space are optimized. By reducing the number of encodings
representing colors according to the constructure of the given, the number of DNA
molecules in the initial solution space is greatly reduced when constructing the
initial solution space, thereby overcoming the problem of “exponential increase

© The Author(s) 2025
J. Xu, Biological Computing, https://doi.org/10.1007/978-981-96-3870-3_7

185

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-96-3870-3protect T1	extunderscore 7&domain=pdf
https://doi.org/10.1007/978-981-96-3870-3_7
https://doi.org/10.1007/978-981-96-3870-3_7
https://doi.org/10.1007/978-981-96-3870-3_7
https://doi.org/10.1007/978-981-96-3870-3_7
https://doi.org/10.1007/978-981-96-3870-3_7
https://doi.org/10.1007/978-981-96-3870-3_7
https://doi.org/10.1007/978-981-96-3870-3_7
https://doi.org/10.1007/978-981-96-3870-3_7
https://doi.org/10.1007/978-981-96-3870-3_7
https://doi.org/10.1007/978-981-96-3870-3_7
https://doi.org/10.1007/978-981-96-3870-3_7

186 7 Non-enumerative DNA Computation Model for Graph Vertex Coloring

Fig. 7.1 Unique 3-colorable
graph with 12 vertices [3]

in the solution space as the problem scale increases”. First, during encoding, the
number of oligonucleotide fragments of different colors representing each vertex
is as small as possible; second, the adjacent vertices in the graph are also adjacent
when marked. This computing model mainly uses PCR to implement non-solution
deletion operations, and DNA sequencing technology verifies its final solution.

The algorithm steps of the non-enumerative DNA computing model are as
follows:

Step 1: Determine the color set;
Step 2: Design and synthesize oligonucleotide fragments representing different
vertices and different colors, and determine the probes synthesized for construct-
ing the initial solution space;
Step 3: Generate the initial solution space;
Step 4: Delete non-solutions and retain the remaining solutions generated;
Step 5: Repeat step 4 until all non-solutions are deleted;
Step 6: Solution detection.

The specific biological implementation process of this model is explained in
detail below using the 12-order graph in Fig. 7.1 as an example.

The graph G shown in Fig. 7.1 is a unique 3-color graph without triangles and is
also a Hamilton graph. The vertex subsets {1, 4, 7, 10} are colored red, {2, 5, 8, 11}
are colored yellow, and {3, 6, 9, 12} are colored blue.

7.2 Biological Implementation of The Non-enumerative DNA
Computing Model

7.2.1 Biological Operation Steps

Corresponding to the above DNA computing model and algorithm steps, the specific
biochemical operations can be simply described as follows:

Step 1: According to the given graph, establish a mapping from the vertex color
set to the oligonucleotide sequence set, that is, encode the colors of the vertices of
the graph to be solved according to certain constraints, and design corresponding
probe sequences. These encoding sequences and probe sequences will be used to
establish the initial solution space;

7.2 Biological Implementation of The Non-enumerative DNA Computing Model 187

Step 2: Mix the DNA sequences of color set and probe, use hybridization
reaction, PCR and other technologies to generate DNA stands representing all
possible solutions of the given problem;
Step 3: Use PCR reaction to extract and amplify DNA stands representing
normal coloring of the graph, thereby eliminating non-solutions. DNA stands
representing normal coloring of the graph are separated and purified by agarose
gel electrophoresis;
Step 4: Use the product recovered in the previous step as a feasible solution
library, repeat step 3 until all non-solutions are eliminated, and the remaining
DNA sequences are the solutions representing the problem;
Step 5: Sequence and analyze the sequence to obtain the coloring scheme. In the
following content, we will give the specific biochemical experimental methods
and experimental results corresponding to each step.

7.2.2 Case Analysis and Related Biochemical Experiments

(1) Encoding
For graph G in Fig. 7.1, when vertices 1 and 12 are colored red and blue,
respectively, i.e., r1 . and b12 ., the coloring schemes of the vertices adjacent to vertices
1 and 12 can be determined accordingly. For example: Since vertex 1 is colored red,
the coloring schemes of vertices 2, 6, and 8 adjacent to vertex 1 are blue or yellow;
and vertex 12 is colored blue, so the coloring schemes of vertices 5 and 11 adjacent
to vertex 12 are red or yellow.

Let xi . represent the coloring of vertex i, here xi ∈ {ri, yi, bi}., i = 1, 2, . . . , 12..
Therefore, according to the above analysis, the coloring schemes of each vertex of
graph G are as shown in Fig. 7.2.

All these possible k-colorings of graph G are denoted as Ck(G).. Here, Xi, i =
1, 2, . . . , 12. represents the set of all possible coloring schemes for vertex i.
According to the principle that adjacent vertices cannot be colored the same, it is
obvious that X2 = {y2, b2}., X3 = {r3, y3, b3}., X4 = {r4, y4, b4}., X5 = {r5, y5}.,
X6 = {y6, b6}., X7 = {r7, y7, b7}., X8 = {y8, b8}., X9 = {r9, y9, b9}., X10 =
{r10, y10, b10}., X11 = {r11, y11}., and Ck(G) = {x1x2 . . . x12, xi ∈ Xi, 1 ≤ i ≤ 12}..

Fig. 7.2 When it is determined that X1 = {r1}, X12 = {b12}., the possible coloring schemes of
each vertex of graph G [2]

188 7 Non-enumerative DNA Computation Model for Graph Vertex Coloring

As can be seen in Fig. 7.2, there is no need to enumerate all possible colorings
for each vertex here, which reduces the required encoding. That is to say, only
27 oligonucleotide fragments need to be designed here to represent the possible
colorings of different vertices. This not only lays the foundation for overcoming
the problem of exponential explosion of the solution space, but also allows for
shorter base sequences to encode vertices. This experimental scheme is mainly
executed through PCR reactions, and the quality of primers in PCR directly affects
the success or failure of PCR experiments. Therefore, in order to obtain highly
specific encoding, the principles of primer design in biochemical experiments must
be considered. The principles of primer design are as follows [4, 5].

First, the primer and the template sequence (the DNA sequence to be amplified)
must be tightly complementary, secondly, the primer itself or the upstream and
downstream primers should avoid forming stable dimers or hairpin structures, and
thirdly, the primer must be specific to the template sequence, i.e., it cannot initiate
DNA polymerization reactions at non-target sites on the template (i.e., mismatches).

In order to achieve these three basic principles in biological reactions, factors
such as the inherent factors of the DNA sequence as a primer and specific
experimental requirements should be considered, such as primer length, primer Tm
value (melting temperature), primer GC content (composition), internal stability of
the double strand formed by the primer and template, primer dimer, cross dimer
between primers and hairpin structure, product length, etc.

In order to obtain a sufficient number of reliable encodings, the authors made
trade-offs among the above biological conditions, and gave specific parameters for
each condition in the encoding conditions, including sequence length, GC content,
minimum substring length, and thermodynamic constraints, for program design.
The specific methods have been introduced in Chap. 5 and will not be repeated here.
The encoded DNA sequences satisfy the following constraints:

• Each designed encoding consists of 20 bases, with A, T, G, C randomly
distributed;

• No encoding has more than 4 consecutive identical bases;
• The GC content of any encoding is between 40% and 60%;
• No two encodings have more than 6 consecutive identical base sequences;
• No encoding has a complementary sequence of 4 consecutive bases;
• The last 4 bases at the 3'

. or 5'
. end of any encoding cannot be the same as any 4

bases in other encodings.

Based on the above constraints, the authors used the principles of primer
design and the biochemical experiment computer-aided software Primer Premier
5.0 to verify the oligonucleotide fragments constituting the primers and obtained
suitable DNA encoding for this model. Based on the constraints described above,
the principles of primer designing were utilized and the software Primer Premier
5.0 was used to validate the DNA sequences that make up the primers. Through
this process, DNA sequences suitable for this model were obtained. Let xi, x ∈

7.2 Biological Implementation of The Non-enumerative DNA Computing Model 189

Table 7.1 Represents the oligonucleotide sequences of possible colorings for each vertex

xi . Sequence xi . Sequence
r1 . CT GGT CCT CT CCT CT AAT CC y2 . T CACCT ACT ACCT T CCCAAA
b2 . CCAT T CACACACCT T CACT C r3 . T AACT CCACCAT AACCACAA
y3 . T ACCAT CAT T CCT AT CACCC . b3 . AACT T CT ACCCT CAACCT CA.

r4 . T CT T GAGCACT GACCT GACA. y4 . T CAGT CGGCAT CAACAT AGT .

b4 . T ACT T T CCACT T CCT AACCC . r5 . T GT T CGCAAT CT AT T CT CAG.

y5 . T ACAGGCT CT T CAGAACGAT . y6 . CAT CACAT AGCACT CCAT CG
b6 . CACAACCAGACCT GCT AT CA. r7 . AT AGT T CCGAGT CT T AGGCA.

y7 . T T ACACGAGCGT CT T CT GAT . b7 . CAAT GGCAACGAT AACT T T C .

y8 . T ACAT T CAAGGACGACAGGT . b8 . GAAGT CAT CGT T GGGT AGT C .

r9 . GAT GAT AAGCACGGAGT AGC . y9 . GT T ACGGT T GT CT T T GCT GA.

b9 . T AAAGT GT AGGGAGGGAAAC . r10 . T T GAACACAGGT AT GCGAT T .

y10 . CCGT T AT GAGCAGGT GT AAT . b10 . ACGACACGACGAGAT AGGAT .

r11 . T T AGT GAGAAT GCCAGT T GC . y11 . CGT GAT T GT T GGACT AT T GG.

b12 . CT T ACCGCCT T ACCAACT AC .

The direction of all sequences are from 5' . to 3' .

Fig. 7.3 Partial encoding
verification results [2]

{r, b, y}, i = 1, 2, . . . , 12., denote the DNA sequences corresponding to the possible
colorings of each vertex in graph G, and its Watson-Crick complementary sequence
is represented by xi .. The specific DNA sequence corresponding to each xi . is shown
in Table 7.1, and the verification results of these sequences are shown in Fig. 7.3.

190 7 Non-enumerative DNA Computation Model for Graph Vertex Coloring

The verification results of the biochemical experiment computer-aided software
show that the Tm values of most primer pair sequences do not differ much, and there
are basically no secondary structures that affect the normal progress of the reaction.
The designed sequences can be used for experimental research of this model.

(2) Design of the Probe Library
Construct the initial non-enumerative solution space in accordance with the prin-
ciple of normal coloring. This principle stipulates that adjacent vertices within the
graph must be colored with different colors. Because vertex i and vertex i + 1. are
always adjacent, i = 1, 2, . . . , n − 1(n = 12)., so the constructed initial solution
space (denoted as T) should be: T = {x1x2 . . . x11x12}., where xi ∈ {ri, yi, bi}.,
i = 1, 2, . . . , 12., and xi . and xi+1 . in x are not both r , y or b. For example, when
i = 3., there is no b3 . and b4 . appearing in a sequence in T , that is, adjacent vertices
are not allowed to be dyed the same color.

Let the DNA sequence xi ∈ Xi . representing the color of vertex i be
divided into the first 10 bases as x1

i . , and the last 10 as x2
i ., i = 1, 2, . . . , 12..

In order to establish the database T , take the last 10 DNA fragments x2
i .

in xi . and the first 10 DNA fragments x1
i+1 . in xi+1 . to synthesize a 20 bp

DNA sequence as a probe, marked with xixi+1 .. For example, for the
sequence y2 = 5' − T CACCT ACT ACCT T CCCAAA − 3'

., r3 = 5' −
T AACT CCACCAT AACCACAA − 3'

., b4 = 5' − T ACT T T CCACT T CCT A.

ACCC − 3'
., then there is y2r3 = 5' − CCT T CCCAAAT AACT CCACC − 3'

.,
r3b4 = 5' − AT AACCACAAT ACT T T CCAC − 3'

., hence y2r3 = 5' −
GGT GGAGT T AT T T GGGAAGG−3'

., r3b4 = 5'−GT GGAAAGT AT T GT G.

GT T AT − 3'
.. According to this method, 43 probes were constructed, as shown in

Table 7.2.

(3) The Initial Solution Space Construction
The 27 DNA sequences representing colors are connected in the order of the vertex
labeling in graph G under the action of T4 DNA ligase through the above 43 probes
to form the DNA strands representing all possible solutions of the initial solution
space. Since each DNA sequence contains 20 bases, each DNA strands in the initial
solution space is 240 bp long. Figure 7.4 explains its experimental principle.

Based on the sequence of the calibrated vertices, it is not difficult to see that the
vertices i and i + 1. , i = 1, 2, . . . , 11., are always adjacent. Use T to represent
the generated initial solution space, that is, the set T = {x1x2 . . . x11x12}., xi ∈ Xi .,
i = 1, 2, . . . , 12., and the vertices i and i + 1., i = 1, 2, . . . , 11., cannot be dyed the
same color.

The specific steps to synthesize the initial solution space are as follows:

Step 1: 5'
. Phosphorylation. The sequence representing each vertex is dyed dif-

ferently under the condition of T4 polynucleotide kinase, and incubated at 37 ◦ .C
for 1h. After the reaction, the reaction product is marked as a phosphorylated
product.

7.2 Biological Implementation of The Non-enumerative DNA Computing Model 191

Table 7.2 43 probes and their sequences

xixi+1 . Sequence xixi+1 . Sequence
r1y2 . T AGT AGGT GAGGAT T AGAGG. r1b2 . GT GT GAAT GGGGAT T AGAGG.

y2r3 . GGT GGAGT T AT T T GGGAAGG. y2b3 . GGT AGAAGT T T T T GGGAAGG.

b2r3 . GGT GGAGT T AGAGT GAAGGT . b2y3 . AAT GAT GGT AGAGT GAAGGT .

r3y4 . T GCCGACT GAT T GT GGT T AT . r3b4 . GT GGAAAGT AT T GT GGT T AT .

y3r4 . GT GCT CAAGAGGGT GAT AGG. y3b4 . GT GGAAAGT AGGGT GAT AGG.

b3r4 . GT GCT CAAGAT GAGGT T GAG. b3y4 . T GCCGACT GAT GAGGT T GAG.

r4y5 . AGAGCCT GT AT GT CAGGT CA. y4r5 . AT T GCGAACAACT AT GT T GA.

b4r5 . AT T GCGAACAGGGT T AGGAA. b4y5 . AGAGCCT GT AGGT T AGGAA.

r5b6 . T CT GGT T GT GCT GAGAAT AG. r5y6 . CT AT GT GAT GCT GAGAAT AG.

y5b6 . T CT GGT T GT GAT CGT T CT GA. b6r7 . T CGGAACT AT T GAT AGCAGG.

b6y7 . GCT CGT GT AAT GAT AGCAGG. y6r7 . T CGGAACT AT CGAT GGAGT G.

y6b7 . GT T GCCAT T GCGAT GGAGT G. r7y8 . CT T GAAT GT AT GCCT AAGAC .

r7b8 . CGAT GACT T CT GCCT AAGAC . b7y8 . CT T GAAT GT AGAAAGT T AT C .

y7b8 . CGAT GACT T CAT CAGAAGAC . y8r9 . GCT T AT CAT CACCT GT CGT C .

y8b9 . CT ACACT T T AACCT GT CGT C . b8r9 . GCT T AT CAT CGACT ACCCAA.

b8y9 . CAACCGT AACGACT ACCCAA. r9y10 . CT CAT AACGGGCT ACT CCgT .

r9b10 . GT CGT GT CGT GCT ACT CCGT . y9r10 . CT GT GT T CAAT CAGCAAAgA.

y9b10 . GT CGT GT CGT T CAGCAAAGA. b9r10 . CT GT GT T CAAGT T T CCCT CC .

b9y10 . CT CAT AACGGGT T T CCCT CC . r10y11 . AACAAT CACGAAT CGCAT AC .

y10r11 . T T CT CACT AAAT T ACACCT G. b10r11 . T T CT CACT AAAT CCT AT CT C .

b10y11 . AACAAT CACGAT CCT AT CT C . y11b12 . AGGCGGT AAGCCAAT AGT CC .

r11b12 . AGGCGGT AAGGCAACT GGCA.

The direction of all sequences are from 5' . to 3' .

Fig. 7.4 Schematic diagram of the principle of synthesizing the initial solution space [2]

Step 2: Annealing. Take the reaction product from the previous step and mix it
with all probes, heat to 94 ◦ .C, slowly cool to room temperature after 5min.
Step 3: Connection. Take 6 μ.l of the annealed product and add T4 DNA ligase,
and leave it overnight at 16 ◦ .C.
Step 4: PCR amplification. After the above steps are completed, the obtained
DNA sequence with a length of 240 bp represents the initial solution space of
the 3-colorable problem of graph G (Fig. 7.5). To further purify and increase the
content of each DNA molecule in the initial solution space, it is necessary to use
the connection product as a template, and r1 . and b12 . as primers to complete the
PCR amplification operation of this step.

192 7 Non-enumerative DNA Computation Model for Graph Vertex Coloring

Fig. 7.5 Construction of the
library. The M is the DNA
marker DL2000 [2]

Step 5: Initial solution space detection. To detect the DNA sequence in the initial
solution space constructed, dilute the recovered product from step 4 by 100 times,
and use < xi, b12 >. and < xi, xi+1 >. as primers to check whether the library
is complete. The PCR reaction system and reaction conditions are the same as
above. The results show that there are appropriate DNA fragments produced
at the corresponding positions, which proves that the initial solution space is
basically complete.

It needs to be emphasized that, based on the sequence of the calibrated vertices,
it is not difficult to see that the vertices i and i + 1. , i = 1, 2, . . . , 11., are always
adjacent. Therefore, when constructing the initial solution space, do not use probes
like riri+1 ., bibi+1 . and yiyi+1 . such probes. This also deletes the non-solutions where
vertices i and i + 1., i = 1, 2, . . . , 11. are dyed the same color, greatly reducing the
constructed initial solution space. According to calculations, the generated initial
solution space only contains 283 DNA sequences representing possible coloring
schemes of graph G , which is far less than 312 ..

(4) Non-solutions Deletion
Let C = 123 . . . (12)1., if excluding C and edge e = {1, 6}., e = {1, 8}., e = {5, 12}.,
E(G). is empty, then all DNA stands in the initial solution space constructed by
the above steps represent the true solution of graph G. Otherwise, there must be
non-solutions in the generated initial solution space. We use PCR, a biological
operation, to delete non-solutions. For each remaining edge of E(G)., e = ij .,
i, j = 1, 2, . . . , 12., i /= j ., three PCRs are required to delete the corresponding
non-solutions.

In the first PCR, use < r1, xi >. , < xi, xj >. and < xj , b12 >. as primer
pairs for amplification. Here, obviously xi . and xj . cannot be r , b or y at the same
time, so the DNA stand representing vertices i and j dyed the same color will not be
amplified. For each edge, use the same operation method to delete all non-satisfying
graphs G Solutions for normal 3-coloring. For example, with edge e = {6, 10}. , the
principle of removing non-solutions is shown in Fig. 7.6.

The first PCR operation: In this PCR reaction, primer pairs < r1, y6 >., <

r1, b6 >., < y6, r10 >., < y6, b10 >., < b6, r10 >., < b6, y10 >., < r10, b12 >.,
< y10, b12 >. and < b10, b12 >. are used for amplification, respectively marked
as ①–⑨. The DNA fragment sizes of products ① and ② are 120 bp, those of ③–⑥
are 100 bp, and those of ⑦–⑨ are 60 bp. The PCR results are shown in Fig. 7.7.

7.2 Biological Implementation of The Non-enumerative DNA Computing Model 193

Fig. 7.6 Schematic diagram
of non-solution deletion

Fig. 7.7 Results of the first
PCR experiment [2]

The products displayed in lanes 1 and 2 of Fig. 7.7a correspond to primer pairs
< r1, y6 >., and < r1, b6 >.. Lanes 3, 4, 5, and 6 correspond to primer pairs <
y6, r10 >., < y6, b10 >., < b6, r10 >., and < b6, y10 >., respectively. In Fig. 7.7b,
lanes 1, 2, and 3 correspond to primer pairs < r10, b12 >., < y10, b12 >. and
< b10, b12 >.. Through this PCR, a DNA sequence with a full length of 240 bp is
decomposed into 3 DNA fragments of different sizes. Here, in the combination of
primers with vertices 6 and 10, there are no primer pairs composed of the same
color sequence, so in the PCR products, the non-solution DNA stands with vertices
6 and 10 dyed the same color are removed, and the DNA sequences representing the
normal coloring of these two vertices are retained.

The second PCR operation: In this PCR, the primer pairs are < r1, r10 >.,
< r1, y10 >., and < r1, b10 >., the experimental results are shown in Fig. 7.8.

Lane 1 of Fig. 7.8 corresponds to primer pair < r1, r10 >., the template is
a mixture of PCR products shown in lanes 1 and 3 of Fig. 7.7, represented as

194 7 Non-enumerative DNA Computation Model for Graph Vertex Coloring

Fig. 7.8 Results of the
second PCR [2]

Fig. 7.9 Results of the third
PCR [2]

①+③; lane 2 corresponds to primer pair < r1, b10 >., the template is ①+④; lane
3 corresponds to primer pair < r1, r10 >., the template is ②+⑤; the PCR product of
lane 4 corresponds to primer pair < r1, y10 >., the template is ②+⑥.

The third PCR operation: The PCR products shown in Fig. 7.8 and the products
shown in Fig. 7.7b are combined according to the color of vertex 10 as a new
template. In this PCR, the only primer pair used is < r1, b12 >.. The experimental
results are shown in Fig. 7.9.

In Fig. 7.9, the lanes all use primer < r1, b12 >., the only difference is the
combination of templates. The product of lane 1 corresponds to a mixture of the
product in lane 1 of Fig. 7.8 and the product ⑦ from the first PCR; the product of
lane 1 corresponds to a mixture of the product in lane 2 of Fig. 7.8 and the product
⑨ from the first PCR; the product of lane 3 corresponds to a mixture of the product
in lane 3 of Fig. 7.8 and the product⑦ from the first PCR; the product of lane 4
corresponds to a mixture of the product in lane 4 of Fig. 7.8 and the product ⑧ from
the first PCR.

For each remaining edge in the set E(G)., the same method is used to remove
other non-solutions. When all edges are completed, the non-solutions of graph G in
Fig. 7.1 are completely removed, and the remaining DNA sequences represent the
normal coloring scheme of graph G.

(5) Solution Detection
In order to read the final solution that satisfies the normal 3-coloring of graph
G, the product of the last round of PCR is connected to TaKaRa’s pMD 19-T
vector and transformed into E. coli DH5 α .. After PCR reaction identification and
double enzyme cutting reaction identification, 25 single clones were selected for
sequencing. The PCR reaction system and conditions are consistent with the above
conditions. The results of PCR reaction identification and enzyme cutting reaction
identification are shown in Figs. 7.10 and 7.11.

7.2 Biological Implementation of The Non-enumerative DNA Computing Model 195

Fig. 7.10 PCR identification
results [2]

Fig. 7.11 Double enzyme
cutting reaction identification
results [2]

The sequencing results are shown in Fig. 7.12. The sequencing results were
analyzed by Bioedit software, and as shown in Fig. 7.13, it can be known that there
is only one solution for the graph.

The experimental results show that the coding scheme and the construction
scheme of the initial solution space established by this model can greatly reduce the
initial solution space, which is convenient for subsequent biochemical experiments;
at the same time, the established coding parameters are reasonable, and the
experiment has good repeatability.

196 7 Non-enumerative DNA Computation Model for Graph Vertex Coloring

Fig. 7.12 Sequencing map

Fig. 7.13 Schematic diagram
of the solution of graph G [2]

7.3 Analysis of Non-enumerative DNA Computing Model

As mentioned earlier, when vertex 1 and its associated vertex n are given a
color in advance, namely red and blue, the number of oligonucleotide sequences
representing possible colors of each vertex also decreases to 3n − d1 − dn − k . ,
where d1 = d12 = 2., k is the sum of the degrees of vertex 1 and n minus 2. In past
research, because the initial solution space used is an enumeration idea, the total
number of DNA molecules synthesized representing various possible colors is 3n.

For a graph with n vertices to perform k(≥3). coloring, the possible number of
colorings is kn

.. When k = 3. , it is 3n
.. If a pair of adjacent vertices are determined

to be colored, the number of searches is 3n − 2.. From Fig. 7.2 of this article, it
can be seen that the color set of vertex i is Xi . , {ri, yi, bi}., the color set of vertex
i + 1. is Xi+1 ., {ri+1, yi+1, bi+1}., according to the principle of different coloring of
adjacent vertices, when constructing the initial solution space, at most 2 elements are
taken from the set Ci . (or Ci+1 .), so that the initial solution space is less than 2n−2

..
The reduction of the initial solution space eliminates some non-solutions during
synthesis, thereby reducing the complexity and number of biochemical experiments,
and is more economical. The more important point is that this idea can be used
in other DNA computing models to reduce the initial solution space and reduce
biological operation steps.

This model searches for feasible solutions through multiple rounds of PCR, each
round of PCR includes 3 PCR reactions, and the total number of PCR reactions
in this article is 24. If there are m edges remaining in the set E(G)., then the total
number of PCR reactions 3m.

Reference [2] is an experiment conducted on a Hamilton graph, and a Hamilton
circle is selected to construct the initial solution space, thereby greatly reducing
the solution space. The size of the established initial solution space is only 283,
which is only 0.0532% of the initial solution space 312 . (531441) constructed by

7.4 Other Non-enumerative DNA Computing Models 197

the enumeration method, and most of the non-solutions are deleted at the same
time when constructing the initial solution space. In fact, for non-Hamilton graphs,
their operating principles are exactly the same, and the biggest difference is that the
probes used to synthesize the initial solution space are different.

7.4 Other Non-enumerative DNA Computing Models

The non-enumerative DNA computing model provides a method to reduce the initial
solution space of the problem to be solved, not only reducing the computational
complexity of the algorithm, but also greatly reducing the complexity of biological
operations. Subsequently, many researchers used this method to construct different
DNA computing models.

In 2010, reference [6] built a “nano dial” molecular computing model based on
circular DNA based on the non-enumerative idea, and solved the 3-coloring problem
of the graph with 12 vertices using the backtracking deletion method. The main
algorithm steps of this model are as follows:

Step 1: DNA Encoding and Generation of Solution Space
The first step of the calculation is to generate a DNA A molecular set is used to
represent the complete data pool. In this step, the concept of non-enumeration is
utilized. First, this concept is used to provide possible coloring schemes for each
vertex, that is, the color set of each vertex (Table 7.3), and then the hybrid connection
method is used to generate the initial solution space. This non-enumeration concept
greatly reduces the number of DNA molecules in the feasible solution library,
facilitating the execution of the subsequent backtracking algorithm.

Step 2: Backtracking Search in Graph G
In reference [6], an edge between two vertices that are not adjacent in numerical
order is defined as a type 2 edge. The algorithm mainly uses the backtracking
method to perform non-solution deletion operations on type 2 edges. In the type
2 edge (vi, vj)., if Ci ∩ Cj /= ∅. (C represents the vertex color set), then the
relationship between these two vertices is called backtracking. To complete this step,
it is necessary to find the type 2 edges in graph G before searching for backtracking,
and then determine whether the color sets of the two vertices satisfy Ci ∩ Cj/ = ∅..

Table 7.3 Composition of the color set of vertices of a given 3-color graph

Vertex 1 2 3 4 5 6 7 8 9 10 11 12
Color set r1 . r3 . r4 . r5 . r6 . r11 .

y2 . y3 . y4 . y5 . y7 . y8 . y9 . y10 . y11 .

b2 . b6 . b7 . b10 . b12 .

198 7 Non-enumerative DNA Computation Model for Graph Vertex Coloring

Step 3: Non-solution Deletion by Backtracking
Backtracking deletion will make the two vertices of backtracking have different
colors. To achieve this goal, reference [6] used several biological operations: Select
(vi ., M, ti (r, y, b)., Mti (r, y, b).), Detect(H), Put into tube (B, M), Clear(M), and
Mix(A, B,, Z). These operations can ensure that the DNA sequence representing
the vertex color is determined in the final true solution. M denotes the solution space,
vi . denotes the vertex of the graph, and ti . denotes a DNA sequence representing the
vertex color (red (r), yellow (y), blue (b)). M ti . denotes the set of DNA molecules
containing only ti .. After selection, H = 1. if DNA products are present; otherwise
H = 0.. A,B,C, . . . ,Z. denote the tube numbers.

Step 4: Solution Reading
Finally, all DNA stands representing the true solution are obtained. Through
sequencing or DNA arrays, the true solution of the graph can be provided.

The problem of solution space explosion is the biggest bottleneck hindering
the development of DNA computing. In response to this problem, the non-
enumeration type DNA computing model established by optimizing the coding
scheme and the construction of the initial solution space greatly reduces the
number of DNA molecules required in the initial solution space. Reference [7]
cited the non-enumerative DNA computing model in their paper and evaluated it
as: “The researchers proposed an optimal method for generating graphical coloring
solutions based on the optimization of biological operations using DNA computing
technology. Although the experimental data set is small, it provides a new technique
for solving problems, which can also be applied to finding solutions for graphs
with a large number of nodes.” The non-enumerative computing model not only
theoretically reduces the solution space, but also has a relatively stable biological
implementation method, which is also a basis for the parallel DNA computing model
in the next chapter.

References

1. Sakamoto, K., Gouzu, H., Komiya, K. et al: Molecular computation by DNA hairpin formation.
Science 288(5469): 1223–12268 (2000).

2. Xu, J., Qiang, X., Yang, Y., et al.: An Unenumerative DNA Computing Model for Vertex
Coloring Problem. IEEE transactions on Nanobioscience 10(2): 94–98 (2011).

3. Harary, F., Hedetniemi, S.T., Robinson, R. W.: Uniquely colorable graphs. Journal of Combina-
torial Theory 6: 264–270 (1969).

4. Lin, W.: PCR Technology Operation and Application Guide. People’s Military Medical Press,
Beijing (1993).

5. Zheng Z.: Optimization Design of Oligonucleotides. Chemistry of Life 21(3): 254–256 (2001).
6. Zhang, C., Yang, J., Xu, J. et al.: A “Nano-Dial” Molecular Computing Model Based on Circular

DNA. Current Nanoscience 6(3): 285–291 (2010).
7. Shukla, A., Bharti, V., Garg, M.L. A Greedy Technique Based Improved Approach to Solve

Graph Colouring Problem. EAI Endorsed Transactions on Scalable Information Systems 8(31):
4 (2021).

HDNLUL10G1049
Typewritten text
https://sanet.st/blogs/ebookdownload

References 199

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Chapter 8
Parallel Vertex Coloring DNA
Computing Model

The non-enumerative DNA computing model presented in the preceding chapter
has the remarkable ability to eliminate a vast number of non-solutions during the
construction of the solution space. This effectively surmounts the issue of the
exponential explosion of the solution space, thereby laying a solid foundation for
further exploration into employing DNA molecules to address larger-scale and
more complex problems. To further investigate the capability of DNA computing
in solving larger-scale and more complex computational problems, the reference [1]
proposes a parallel DNA computing model for the graph vertex coloring problem by
comprehensively taking into account multiple perspectives, including the molecular
level, algorithm level, and experimental level. Notably, the problem scale that this
model can handle is the largest within the domain of DNA computing. The following
section will focus on this remarkable work.

8.1 Model and Algorithm

The reference [1] puts forward several parallel basic ideas as follows: For larger-
scale graphs, they are initially decomposed into several subgraphs. This subgraph
partitioning approach not only enables the deletion of a greater number of non-
solutions during the construction of the solution space but also facilitates the
implementation of biological operations. Subsequently, each smaller subgraph is
solved in parallel. The solution process encompasses a series of steps, including
vertex sorting, the identification of bridge vertices (that is, a pair of adjacent
vertices with the maximum degree within the subgraph), the determination of the
color set for each vertex, DNA sequence encoding, the establishment of probes,
the creation of the initial solution space, the elimination of non-solutions, and
so on. Finally, the subgraphs are merged, and non-solutions are gradually deleted
until the operation terminates upon the synthesis of the original graph. This model
addresses the issue of the exponential explosion of the solution space through

© The Author(s) 2025
J. Xu, Biological Computing, https://doi.org/10.1007/978-981-96-3870-3_8

201

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-96-3870-3protect T1	extunderscore 8&domain=pdf
https://doi.org/10.1007/978-981-96-3870-3_8
https://doi.org/10.1007/978-981-96-3870-3_8
https://doi.org/10.1007/978-981-96-3870-3_8
https://doi.org/10.1007/978-981-96-3870-3_8
https://doi.org/10.1007/978-981-96-3870-3_8
https://doi.org/10.1007/978-981-96-3870-3_8
https://doi.org/10.1007/978-981-96-3870-3_8
https://doi.org/10.1007/978-981-96-3870-3_8
https://doi.org/10.1007/978-981-96-3870-3_8
https://doi.org/10.1007/978-981-96-3870-3_8
https://doi.org/10.1007/978-981-96-3870-3_8

202 8 Parallel Vertex Coloring DNA Computing Model

optimizing subgraph partitioning, reducing vertex color sets, and sorting the vertices
of subgraphs. Additionally, it designs a parallel PCR operation technology. By
using this technology, non-solutions can be simultaneously deleted from multiple
edges in the graph, significantly reducing the number of biological operations and
substantially improving the computing efficiency. These parallel concepts render
it feasible to solve larger-scale complex problems. The reference [1] performed
experimental calculations on a graph with 61 vertices as shown in Fig. 5.4, and
obtained all 8 solutions that satisfy the normal 3-coloring of the graph. It can be
proved that after v1 .and vn . are given coloring, the computing power of this model
can reach O(359 .). The specific algorithm is shown in Algorithm 8.1:

Algorithm 8.1 Parallel DNA computing model algorithm
Input: Undirected connected graph G, color set C
Output: Normal coloring of graph G
subgraphs = divide_subgraphs(G) // Divide subsets for given graph G
Initialize color_set_dict = {}, probe_dict = {}, initial_solutions = {}
color_set_dict = encode_subgraph(subgraphs, C) // Determine the corresponding color set for the
subgraph set
probe_dict = determine_probe(subgraphs) // Encode the subgraph set to determine the correspond-
ing probe
for subgraph in subgraphs:// Traverse the subgraph set and generate the initial solution space
corresponding to each subgraph
initial_solutions.append(generate_initial_solution(subgraph))
while not all_solutions_valid(subgraphs, initial_solutions): // Use PCR to delete non-solutions of
each subgraph according to the graph path until all non-solutions are deleted
remove_non_solutions(subgraphs, initial_solutions)
merged = merge_and_remove(subgraphs, initial_solutions) // Merge subgraphs and delete non-
solutions
while not all_solutions_valid(merged, initial_solutions): // Check if non-solutions have been
completely removed, if not, continue to remove
remove_non_solutions(merged, initial_solutions)
return merged // Output solutions

8.1.1 Subgraph Partitioning and Determination of Bridge
Vertices

The first step of the parallel DNA computing model is to perform subgraph
partitioning. Gj ., V (Gj) ⊂ V (G)., E(Gj) ⊂ E(G)., j = 1, 2, · · · ,m − 1. are
used to represent the first-level subgraphs. The steps for subgraph partitioning are
as follows:

Step 1: Determine the size of the subgraph. Generally, the number of vertices
in the partitioned subgraph is between 15 and 20 and each subgraph has as

8.1 Model and Algorithm 203

Fig. 8.1 An example of a
first-level subgraph partition
[1]. (a) Graph G. (b)
Subgraph G1' .. (c) Subgraph
G2' .. (d) Subgraph G

'
3 .. (e)

Subgraph G
'
4 .

many edges as possible. This method of determining the first-level subgraph
can eliminate most of the non-solutions during the processing of the subgraph.
The more non-solutions are deleted in the first-level subgraph, the fewer non-
solutions will naturally be in the synthesized second-level subgraph, which not
only makes biochemical operations easier, but also prevents the complexity of
the calculation from increasing too quickly with the gradual merging of the
subgraphs.
For example, for the graph shown in Fig. 8.1, two different partition meth-
ods are given, where Fig. 8.1b and c are the results of the first partitioning
method, Fig. 8.1d and e represent the second partitioning method. Although the
size of the subgraphs obtained by the two partitioning methods is basically the
same, the number of edges contained in each subgraph is different. Obviously,
the second partitioning method is more likely to delete more non-solutions first
in the subgraph.
Step 2: Determine the first-level subgraph and determine the two bridge vertices
u1 ., u2 . of this subgraph. These two bridge vertices must be adjacent and satisfy
the condition that the sum of their degrees in the subgraph is the largest; if there
is more than one pair of vertices that satisfy this condition, choose the pair with
the most edges after sorting the vertices with these two points as the starting point
and the end point, that is, satisfy Nedge(u1 = vi1vi2 · · · vin = u2). is the largest;
if there is more than one pair of vertices that satisfy the above conditions, choose
one of them.
Step 3: Determine the second subgraph G2 ., this subgraph should include u2 ..
Find a new bridge point u3 . in subgraph G2 ., the method is: the one with the

204 8 Parallel Vertex Coloring DNA Computing Model

Fig. 8.2 The four subgraphs
of the first-level subgraph
partition of graph G [1]. (a)
Subgraph G1 .. (b) Subgraph
G2 .. (c) Subgraph G3 .. (d)
Subgraph G4 .

largest degree in G2 . that is adjacent to u2 .. The selection condition is the same as
step 2.
Step 4: Repeat step 3 until the last subgraph is partitioned.

Figure 8.2 shows the 4 subgraphs divided from the graph G shown in Fig. 5.4,
where vertices 1, 16, 31, 46, 61 are the 5 bridge vertices. It should be pointed out
that the number of vertices in the last first-level subgraph Gm . is generally different
from the number of vertices in the previous subgraphs, and the bridge vertices of
Gm . should be u1 . (a bridge vertex of G1 .) and um−1 . (a bridge vertex of Gm−1 .). The
selection of bridge vertices is a key step in the model, because through the bridge
vertices, the first-level subgraphs can be merged into second-level subgraphs using
PCR technology. And the determination of the subgraph bridge vertices needs to
meet the following conditions: in a subgraph, the sum of the degrees of the two
bridge vertices should be as large as possible. The larger the sum of the degrees of
the two bridge vertices, the more vertices adjacent to these two vertices, which will
reduce the number of colors in the color set of the corresponding vertices, thereby
making the initial solution space smaller.

8.1 Model and Algorithm 205

8.1.2 Subgraph Vertex Sorting and Determination of Color Set
of Each Vertex in Subgraph

8.1.2.1 Subgraph Vertex Sorting

After the subgraph partitioning is completed, the bridge vertices of each subgraph
are also determined. Subgraph vertex sorting is to find a vertex sorting in this
subgraph with the two bridge vertices as the starting point and the end point, so that
the number of edges between adjacent vertices in this sorting is as many as possible.
Take subgraph G1 . as an example, if the vertex set of subgraph G1 . is V (G1).=
{v1, v2, · · · , vt}., let v1 ., vt . be its two bridge vertices, without loss of generality,
suppose the vertex sequence of the sorting is v1 = vi1vi2vi3 · · · vit = vt . , it needs
to satisfy

.max|{(vij vi(j+1))}|, vij , vi(j+1) ∈ V (G1); j = 1, 2, · · · , t − 1 (8.1)

The concept of root path set is introduced before giving the vertex sorting algorithm.

Definition 8.1 Assume v is a vertex of graph G. The set of all paths in G starting
from vertex v is called v-root path set, or simply v-path set, denoted as P(v)..

It is not difficult to find a vertex’s path set, such as firstly taking the neighborhood
N(v)., then finding the neighborhood for each vertex in N(v)., denoted as N2(v).,
N2(v). does not contain element v, and so on, resulting in N3(v)., N4(v). and so on,
which will terminate within |V (G)| − 1. steps. This method is actually the so-called
pruning algorithm, an NP-algorithm. Since the number of vertices in the first-level
subgraph determined in the model is within 20, it is easy to implement.

Next, the vertex sorting algorithm for the first-level subgraph will be introduced.
Suppose G1 . is a first-level subgraph, v1 ., vt . are two bridge vertices of G1 .. The steps
of the vertex sorting algorithm for G1 . are as follows:

Step 1: Find the root path sets P(v1). andP(vt). of the two bridge vertices v1 ., vt ..
If there is a Hamilton path of subgraph G1 . in P(v1)., select this path. Otherwise,
go to step 2;
Step 2: If P(v1) ∪ P(vt) = V (G1)., select two paths P1 . and Pt . from P(v1). and
P(vt). respectively. These two paths should meet the following three conditions:
① P1 = v1vi2vi3 · · · vir ., Pt = visvis+1 · · · vt .; ② max(|E(P1)| + |E(Pt)|).; ③
V (P1) ∩ V (Pt) = ∅..
Step 3: If V ' = V (G1) − P(v1) − P(vt) /= ∅., find the longest path
from the derived subgraph G[V ']. , denoted as P ' = u1u2 · · · um .. If V '' =
V (G1) − V (P1) − V (Pt) − V ' = ∅. , then the vertex sorting of subgraph
G1 . is: v1vi2vi3 · · · viru1u2 · · · umvisvis+1 · · · vt .. If V '' = V (G1) − P(v1) −
P(vt) − V ' = ui1, ui2, · · · , uiq /= ∅., then the vertex sorting of subgraph G1 .

is: v1vi2vi3 · · · viru1u2 · · · umui1ui2 · · · uiqvisvis+1 · · · vt ..
Take the subgraph G'

3 . shown in Fig. 8.1d as an example, its two bridge vertices
are 1 and 13, you can find the path 1-10-11-2 from the root path set of bridge

206 8 Parallel Vertex Coloring DNA Computing Model

Fig. 8.3 Subgraph G'
3 . vertex sorting and corresponding set of 11 edges [1]

point 1; find the path 13-14-7-8-15-3-9-4 from the root path set of bridge point
13, then get V ' = {5, 6, 12}., then find the longest path 5–6 from the derived
subgraph G[V ']., then get V '' = {12}.. Therefore, the vertex sorting obtained is
shown in Fig. 8.3a. Figure 8.3b shows another sorting method, and this sorting
method is better than the sorting shown in Fig. 8.3a. As can be seen, the vertex
sorting in the first subgraph in Fig. 8.2a is 1, 2, · · · , 16., this sorting is the best,
each pair of adjacent vertices i, i + 1. are adjacent, i = 1, 2, · · · , 15..
Step 4: Vertex renumbering. After the vertices of the subgraph are sorted accord-
ing to the above steps, the vertices of the graph need to be renumbered. Assume
the vertex sorting of the subgraph before renumbering is v1v2, · · · , vt . , the
sequence after the vertices are rearranged is vσ(1), vσ(2), · · · , vσ(t) ., obviously,
it is obtained by the following permutation of the vertex subscript:

. σ =
l

1 2 · · · t

σ (1) σ (2) · · · σ(t)

l

For example, after the vertex sorting of the above subgraph G'
3 ., the mapping of

vertex renumbering is:

. σ =
l
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 10 11 2 5 6 12 4 9 3 15 8 7 14 13

l

Without loss of generality, after the vertices of the sorted subgraph are renum-
bered, the principle of renumbering is: let the vertex σ(1). be labeled as i, where
i = 1, 2, · · · , t ..

8.1.2.2 Determination of Vertex Color Set

Suppose the color set C3(G) = {r, b, y}., ri ., yi ., bi . represents the vertices vi . in the
graph are colored red, yellow, and blue respectively. Since the bridge vertices of the
subgraph are adjacent, without loss of generality, for the two bridge vertices v1 ., vt .

of the first level subgraph G1 ., let vertex v1 . be colored red, denoted as r1 ., and vt .

be colored blue, denoted as bt . (Vertex vt . can also be colored yellow, just need to
calculate all solutions in the case of blue, and then do a color permutation to get

8.1 Model and Algorithm 207

Table 8.1 Composition of the color set of vertices of a given 3-color graph

Subgraph G1 . Subgraph G2 . Subgraph G3 . Subgraph G4 .

vi . C(vi). vi . C(vi). vi . C(vi). vi . C(vi).

v1 . {r1}. v16 . {b16}. v31 . {r31}. v46 . {b46}.
v2 . {y2, b2}. v17 . {r17, y17}. v32 . {y32, b32}. v47 . {r47, y47}.
v3 . {r3, y3}. v18 . {y18, b18}. v33 . {r33, y33, b33}. v48 . {r48, b48}.
v4 . {r4, y4}. v19 . {y19, b19}. v34 . {r34, y34}. v49 . {r49, y49}.
v5 . {y5, b5}. v20 . {r20, y20}. v35 . {y35, b35}. v50 . {r50, y50}.
v6 . {y6, b6}. v21 . {r21, y21, b21}. v36 . {r36, y36, b36}. v51 . {r51, y51, b51}.
v7 . {r7, y7}. v22 . {r22, y22}. v37 . {r37, y37}. v52 . {r52, y52}.
v8 . {r8, y8}. v23 . {r23, y23}. v38 . {r38, y38, b38}. v53 . {r53, y53, b53}.
v9 . {r9, y9, b9}. v24 . {y24, b24}. v39 . {y39, b39}. v54 . {r54, b54}.
v10 . {r10, y10, b10}. v25 . {y25, b25}. v40 . {r40, y40, b40}. v55 . {r55, y55}.
v11 . {r11, y11}. v26 . {r26, y26}. v41 . {r41, y41}. v56 . {r56, y56}.
v12 . {r12, y12}. v27 . {r27, y27}. v42 . {r42, y42}. v57 . {r57, b57}.
v13 . {r13, y13, b13}. v28 . {y28, b28}. v43 . {y43, b43}. v58 . {r58, b58}.
v14 . {y14, b14}. v29 . {r29, y29, b29}. v44 . {r44, y44, b44}. v59 . {r59, y59}.
v15 . {r15, y15}. v30 . {y30, b30}. v45 . {r45, y45}. v60 . {r60, b60}.
v16 . {b16}. v31 . {r31}. v46 . {b46}. v61 . {y61}.

the solution of vt . colored yellow, that is, in the case of red unchanged, swap yellow
and blue to get another coloring. The other subgraphs are treated in the same way.).
Besides vertex vt ., each vertex in the neighborhoodN(v1).of vertex v1 . is colored blue
or yellow; similarly, except for vertex v1 ., each vertex in the neighborhood N(vt).

of vertex vt . is colored red or yellow. The color sets of the 4 first-level subgraphs
shown in Fig. 8.2 are as shown in Table 8.1, where C(1) = {r1}., C(16) = {b16}.,
C(31) = {r31}., C(46) = {b46}., C(61) = {y61}..

8.1.3 Encoding of DNA Sequences

Theorem 8.1 Let the DNA sequence representing the possible colors of vertex vi
be marked as xi ., x ∈ {r, b, y}., i = 1, 2, · · · , n.. Its Watson-Crick complementary
sequence is represented by xi .. According to the possible color set of each vertex, it
can be determined that for any arbitrary graph, the number of DNA sequences that
need to be encoded is:

. NDNA = kn − d1 − dm − 2(k − 1) (8.2)

The encoding used in parallel DNA computing not only considers the specific
hybridization reaction, but also considers the biological constraints of using PCR

208 8 Parallel Vertex Coloring DNA Computing Model

technology, and also considers the factors of large scale. Comprehensive design,
encoding according to the following constraints:

• All encodings do not have more than 4 consecutive A, T, C or G;
• The GC content of any encoding is between 40 and 60%;
• No two encodings have more than 8 consecutive bases that are the same;
• Any coding sequence does not have a complementary sequence of four consecu-

tive bases;
• Any coding sequence’s 3'

. or 5'
. end’s five consecutive bases cannot be the same

as any five bases in other codings;
• The absolute value of the chemical free energy change (|ΔG|.) generally does not

exceed 6.0 kcal/mol when the DNA sequence used as a primer forms a dimer
itself;

• The |ΔG|. of the dimer formed between the DNA sequences used as primers
generally does not exceed 9.0 kcal/mol, while the 3'

. end of the dimer formed
between the primers |ΔG|. cannot exceed 6.0 kcal/mol.

8.1.4 Determine the Calculation Probe According to the Probe
Diagram

Probes are only established between two adjacent vertices determined in Sect. 8.1.2,
that is, only between vertices vi . and vi+1 ., the probe between them is denoted as
xixi+1 .. If vi . and vi+1 . are adjacent in G, then xi . and xi+1 . cannot take the same
color; if vi . and vi+1 . are not adjacent in G , then xi . and xi+1 . can take the same color.
Here Ci . represents the color set of vertex vi ., i = 1, 2, · · · , n.. A graph G’s probe
diagram, denoted as B(G)., is simply denoted as B, defined as:

. V (B) =
nl l

i=1

C(i), E(B) =
nl l

i=1

{xz; xz is a probe, x ∈ C(i), z ∈ C(i + 1)}
(8.3)

The specific steps to determine the calculation probe are as follows:

Step 1: Provide the probe diagram for each primary subgraph.
Step 2: Provide the probe set according to the vertices and edges of the probe
diagram. For example, in the subgraph G1 .given in Fig. 8.3, the color set of vertex
7 is {r7, y7}., the color set of vertex 8 is {r8, y8}., according to the probe diagram
of G1 . (Fig. 8.4a), the probes r7y8 . can be obtained.
Step 3: Determine the DNA sequence representing each probe. For the
probe xixi+1 ., it is composed of the complement of the sequence composed
of the second half of the DNA sequence representing xi . and the first
half of xi+1 .. Such as y7 .=5' − AAT ACGCACT CAT CACAT CG − 3'

.,
r8 .=5' − GACCT T ACCGT T T AGAGT CG − 3'

., then there is y7r8 .=5' −

8.1 Model and Algorithm 209

Fig. 8.4 Probe diagrams corresponding to 4 subgraphs. (a) B1 .. (b) B2 .. (c) B3 .. (d) B4 .

CAT CACAT CGGACCT T ACCG−3'
., y7r8 = 5'−CGGT AAGG.T CCGA

T GT GAT G − 3'
..

Figure 8.4 shows the probe diagrams of the four primary subgraphs shown in
Fig. 8.2, denoted as B1 ., B2 ., B3 . and B4 .. From each probe diagram, the number and
distribution of probes in the corresponding primary subgraph can be clearly seen.

8.1.5 Initial Solution Space Construction

The synthesis method of the initial solution space adopts the method proposed by
Adleman [2] in 1994, but the synthesized initial solution space is no longer an
enumeration of all possible solutions, but the remaining possible solutions after
excluding a large number of non-solutions under the action of the previous steps.
Here S(Gj). represents the initial solution space of the primary subgraph Gj ., that
is, the set S(Gj) = x1x2 · · · xt ., where x ∈ {r, b, y}., j = 1, 2, · · · ,m.. If each xi . is
l bases long, and each subgraph has t vertices, then the generated DNA sequence
representing the possible solution contains t × l . bases.

It should be noted that when synthesizing the initial solution space of each
primary subgraph, if there is an edge between vertices vi . and vi+1 ., then the probe

210 8 Parallel Vertex Coloring DNA Computing Model

between these two vertices does not include the situation where the two vertices have
the same color, so when constructing the initial solution space, some non-solutions
with the same color on adjacent vertices can be deleted. The larger the Nedge(Gj).

of the primary subgraph Gj ., the more non-solutions are deleted when constructing
the initial solution space.

8.1.6 Non-solution Deletion

Let E1
j = {(vivi+1) ∈ E(Gj),∨(vivt) ∈ E(Gj); i = 1, 2, · · · , t − 1}., E2

j =
{(v1vi) ∈ E(Gj), i = 2, 3, · · · , t}., E3

j = E(Gj) − E|1j − E2
j , j = 1, 2, · · · ,m..

The removal of non-solutions is the deletion of the DNA sequences that color the
two vertices associated with each edge in E3

j . from the initial solution space S(Gj)..
The process of removing non-solutions is mainly achieved through PCR technology.
In the specific process of removing non-solutions, the edges in E3

j . are divided into
cases and non-solutions are removed separately.

(1) Forward Edge
Definition 8.2 Let Gj . be a subgraph with a vertex subset V (Gj) = v1, v2, · · · , vt .,
and v1v2 · · · vt . is its vertex sequence.∀e = vivk ∈ E(Gj)., if 1 ≤ i < k ≤ t ., then
e = vivk . is a forward edge; otherwise, it is a reverse edge. If all the edges in the path
are forward edges, then the path is called a forward path, otherwise it is a reverse
path.

The forward path P = vivj vkvl, 1 ≤ i ≤ j ≤ k ≤ l ≤ t . will be used as an
example to introduce the principle of removing non-solutions in the case of forward
edges. In this case, several PCRs need to be processed in parallel to complete the
process of removing non-solutions. The path P contains three forward edges: vivj .,
vjvk ., vkvl ., in the first PCR, < x1, xi >., < xi, xj >., < xj , xk >., < xk, xl >.

and < xl, xt >. are used as primer pairs for amplification. Except for the first pair
and the last pair of primers, the two vertices in the other primer pairs cannot be
colored the same. In this way, the DNA sequence is divided into 5 fragments, and
each fragment’s two endpoints represent a normal coloring for the corresponding
vertices. Then they are merged step by step into t × l . base DNA sequences. In this
case, the non-solutions corresponding to multiple edges can be deleted in parallel.

(2) Single Edge
After removing non-solutions from E3

j . according to the first case, some single edges
may remain. The operation of removing non-solutions varies depending on whether
the coloring of the two vertices associated with this edge is determined. After
completing the removal of non-solutions from the edges in E3

j . of each subgraph,
the DNA sequences representing the normal coloring of each subgraph Gj . can be
obtained.

8.2 Specific Example 211

8.1.7 Subgraph Merging and Non-solution Deletion

After obtaining the DNA stands representing the solutions of each first-level
subgraph, the subgraphs are merged step by step, and after each merge, the non-
solution removal step for this level of subgraph is implemented, mainly including
the following three steps:

Step 1: Merge the first-level subgraphs Gj . and Gj+1 ., j = 1, 2, · · · ,m.. Using
the DNA sequence of the bridge point, the DNA sequences representing the
normal coloring of these two first-level subgraphs after removing non-solutions
are spliced together. If |V (Gj)| = t1 ., |V (Gj+1)| = t2 ., then a DNA sequence of
length(t1 + t2 − 1) × l . bases is formed. These DNA sequences will serve as all
possible solutions for the second-level derived subgraph G[V (Gj) ∪ V (Gj+1)].
of the graph G.
Step 2: According to the method of removing non-solutions described in
Sect. 8.1.6, remove non-solutions from each second-level derived subgraph
G[V (Gj) ∪ V (Gj+1)].. More precisely, remove the non-solutions corresponding
to each edge in the edge set Ej,j+1 = {(uv) ∈ E(G); u ∈ V (Gj), v ∈
V (Gj+1)}., and thus obtain the DNA sequences representing the normal coloring
of the second-level derived subgraph G[V (Gj) ∪ V (Gj+1)]..
Step 3: Repeat steps 1 and 2 for the second-level or higher-level derived
subgraphs until they are merged into the graph G, and finally obtain the DNA
sequences representing the normal coloring of the graph G.

8.1.8 Solution Detection

The final DNA sequences representing the normal coloring of the graph can be
easily obtained through sequencing.

8.2 Specific Example

8.2.1 Subgraph Partitioning and Color Set Determination

The method of subgraph partitioning and vertex sorting in Sect. 8.1.1 gives 4
subgraphs of graph G as shown in Fig. 8.2. According to the method in Sect. 8.1.1,
the color sets of the 4 subgraphs are shown in Table 8.1.

212 8 Parallel Vertex Coloring DNA Computing Model

8.2.2 Encoding

Based on the constraints proposed in Sect. 8.1.3, the method in reference [3] was
used for preliminary encoding. For the graph G shown in Fig. 5.4, 129 DNA
sequences representing colors were encoded.

At the same time, according to the method of constructing probes in Sect. 8.1.4,
and the number of probes that need to be constructed for the probe graph corre-
sponding to each subgraph is 185, denoted as xixi+1 . , where xi ∈ Ci ., xi+1 ∈ Ci+1 .,
and xi /= xi+1 ..

8.2.3 Construction of Initial Solution Space

Here, taking the subgraph G1 . as an example to introduce the construction method
of the initial solution space and the detection results. First, the 5'

. end of the 33
DNA sequences representing the vertex color is phosphorylated, and then annealed
with the corresponding 46 probes. The reaction conditions are: 94 ◦C., 5min, 50 ◦C.,
10min. The reaction product is ligated with T4 DNA ligase and left overnight at
16 ◦C.. Finally, the primer pair < r1, b16 >. is used for amplification, and a DNA
sequence set of 320 bp size is obtained, which is S(G1). (Fig. 8.5a). The product is
recovered and dissolved in 50 μ.l of sterile water, and its concentration is measured
to be 400 ng/ μ.l. The construction methods of S(G2)., S(G3)., and S(G4). are the
same, and the experimental results are shown in Fig. 8.5b–d.

Afterwards, < r1, xi >. is used, where x = {r, b, y}., i = 2, 3, · · · , 16., as
the primer for the PCR reaction to judge the completeness of the initial solution
space. The PCR reaction system and conditions are the same as above. The
detection results are shown in Fig. 8.5e–f. The experimental results show that the
vertex position in the DNA sequence is consistent with the vertex order of the
corresponding subgraph, and each vertex’s possible coloring scheme exists in the
initial solution space.

8.2.4 Subgraph Non-solution Deletion

(1) Paths or Circles Formed by Forward Edges
The deletion of non-solution can be performed in parallel according to the multi-
edge constraint, greatly reducing the number of PCR operations. The experimental
results are given using the path P = 16 − 20 − 22 − 26 − 30 − 31. in subgraph G2 .

as an example.

First, using < b16, r20 >., < b16, y20 >., < r20, y22 >., < y20, r22 >., <

r22, y26 >., < y22, r26 >., < r26, y30 >., < r26, b30 >., < y26, b30 >., <

y30, r31 >., and < b30, r31 >. as primer pairs, the DNA in the initial solution space

8.2 Specific Example 213

Fig. 8.5 Construction and detection of the initial solution space, where M is the DNA marker φ .
X174-Hae III. The lanes 1 in (a)–(d) are the initial solution spaces of each constructed subgraph,
where (a)–(d) correspond to S(G1)., S(G2)., S(G3)., and S(G4)., respectively, each DNA sequence
is 320 bp in size. (e) and (f) are the detection results of the solution library [1]

Fig. 8.6 Experimental
results of non-solution
deletion for the circle
C = 16 − 17 − · · · − 31 − 16.
[1]

is used as a template to decompose the full-length 320 bp DNA sequence into several
fragments of different sizes: 100 bp (16–20), 60 bp (20–22), 100 bp (22–26), 100 bp
(26–30) and 40 bp (30–31) (see Fig. 8.6a–b). It can be seen that there is no band in
the lane 5 of Fig. 8.6a which is according to the primer pair < r22, y26 >.. That
means there is no DNA sequence containing both r22 . and y26 . when constructing
the initial solution space. This further proves through experiments that some non-
solutions are deleted when constructing the initial solution space.

214 8 Parallel Vertex Coloring DNA Computing Model

Next, the second PCR operation for this circle is performed. Using < b16, y22 >.

as the primer, the mixture of PCR products in lanes 1 and 3 of Fig. 8.6a is used as the
template, and a 140 bp electrophoresis band is obtained; using < r26, r31 >. as the
primer, the mixture of PCR reaction products in lanes 1 and 4 of Fig. 8.6b is used as
the template, and a 120 bp electrophoresis band is obtained; using < r26, r31 >. as
the primer, the mixture of PCR reaction products in lanes 2 and 5 of Fig. 8.6b is used
as the template, and a 120 bp electrophoresis band is obtained. The electrophoresis
results are shown in Fig. 8.6c.

Again, the third PCR operation for this circle is performed. Using < b16, r26 >.

as the primer, the mixture of PCR products in lane 6 of Fig. 8.6a and lane 1 of
Fig. 8.6c is used as the template, and a 220 bp electrophoresis band is obtained. The
electrophoresis results are shown in Fig. 8.6d.

Finally, the fourth PCR operation for this circle is performed. Using <

b16, r31 >. as the primer, the mixture of PCR products in lane 1 of Fig. 8.6d and
lane 2 of Fig. 8.6c is used as the template; the mixture of PCR products in lane 1 of
Fig. 8.6d and lane 3 of Fig. 8.6c is used as the template, and two DNA strands with
320 bp are obtained, respectively. The electrophoresis results are shown in Fig. 8.6e.

After the above reactions are completed, two sets of solutions are generated:
b16r20y22r26y30r31 . and b16r20y22r26b30r31 .. These two sets of solutions will serve as
new templates for the next non-solution deletion process.

(2) Single Edges with Undetermined Coloring of Associated Vertices
The experimental results are given using the edge e = {4, 8}. in subgraph G1 . as an
example.

Firstly, using the product of the previous PCR as a template, the first PCR was
performed with < r1, r4 >., < r4, y8 >., < y8, b16 >., < r1, y4 >., < y4, r8 >.,
< r8, b16 >. as primer pairs, the results are shown in Fig. 8.7a. Among them, when
< y4, r8 >. is used as the primer, no PCR product is generated.
Secondly, using < r1, y8 >. as the primer, and the mixture of PCR products from

lanes 1 and 3 in Fig. 8.7a as the template, the second PCR operation was performed.
A DNA sequences with 160 bp were obtained (shown in Fig. 8.7b).

Finally, using < r1, b16 >. as the primer, and the mixture of PCR products from
lane 5 in Fig. 8.7a and lane 1 in Fig. 8.7b as the template for the PCR reaction,
DNA strands with 320 bp were obtained (see Fig. 8.7c). At this point, the three
PCR operations for e = {4, 8}. are completed and the coloring schemes representing
vertices 4 and 8 in the DNA sequence have been determined to be r4 ., y8 ..

Fig. 8.7 Experimental
results of deleting
non-solutions for edge
e = {4, 8}. [1]

8.2 Specific Example 215

Fig. 8.8 Experimental
results of deleting
non-solutions for edge
e = {34, 39}. [1]

(3) Edges with Vertices Whose Coloring Has Been Determined
The experimental results are given using the edge e = {39, 42}. of subgraph G3 .

as an example, as shown in Fig. 8.8. When all PCR reactions for deleting circle
C1 = 31− 35− 39− 43− 31. in subgraph G3 . are completed, the coloring of vertex
39 is determined. After the first PCR reaction of circle C2 = 34−38−42−46−34.,
the coloring of vertex 42 is determined. At this time, while deleting non-solutions of
circle C2 ., the exclusion method can be used to delete non-solutions for e = {39, 42}..
Using the primer pair < y39, y42 >., and the 6 DNA sequences produced after the
above reaction as templates, PCR reaction is performed. In Fig. 8.8, lanes 5, 6, 7,
8, 11, 12 show an 80 bp electrophoresis band, indicating that these corresponding
DNA sequences represent the situation where vertices 39 and 42 are colored the
same, and need to be discarded. The templates that did not form a length of 80 bp
represent the situation where vertices 39 and 42 are colored normally, and will be
retained for subsequent non-solution deletion operations.

8.2.5 Subgraph Merging and Non-solution Deletion

After completing the parallel operations for each subgraph, the solutions of each
subgraph need to be merged and further non-solutions deleted. The mixtures of
DNA sequences of length 320 bp representing solutions that satisfy normal 3-
coloring of subgraphs G1 . and G2 . after the above reactions are mixed pairwise
as templates. Using < r1, r31 >. as primers, PCR amplification is performed to
obtain DNA stands of length 620 bp, which are all possible 3-coloring solutions
of subgraph G[V1 ∪ V2]. derived from graph G , that is, the initial solution space
of subgraph G[V1 ∪ V2]. . Then, the non-solutions in this initial solution space
are completely deleted using the method of deleting non-solutions of the above
subgraphs. The results obtained are denoted as Xi ., i = 1, 2, 3, 4., see Fig. 8.9a,
b.

X1 = r1b2y3r4y5b6r7y8r9b10y11r12b13y14r15b16r17y18b19r20b21y22r23b24y25r26y27 .

b28r29y30r31 .;
X2 = r1b2y3r4y5b6r7y8r9b10y11r12b13y14r15b16r17b18y19r20b21y22r23b24y25r26y27 .

b28r29y30r31 .;
X3 = r1b2y3r4y5b6r7y8b9y10r11y12r13b14y15b16r17y18b19r20b21y22r23b24y25r26y27 .

b28r29y30r31 .;

216 8 Parallel Vertex Coloring DNA Computing Model

Fig. 8.9 Solution of subplots G[V1 ∪ V2]. and G[V3 ∪ V4].. (a) The PCR products of lanes 1, 2. are
X1 . and X2 .; (b) the PCR products of lanes 1, 2. are all X3 ., and the PCR products of lanes 3, 4. are all
X4 .. Their primer pairs are all /r1, r31/.. (c) The products of lanes 1, 2. are all Y1 .; and the products
of lane 3 are all Y2 .; (d) the product of lane 1 is Y3 .; and lane 2 the product of lane 1 is Y4 .; in (e) the
product of lanes 1, 2. is Y5 .; the product of lanes 3, 4. is Y6 .. Their primer pairs are all /r31, y61/.

X4 = r1b2y3r4y5b6r7y8b9y10r11y12r13b14y15b16r17b18y19r20b21y22r23b24y25r26y27 .
b28r29y30r31 ..

At the same time, the same method is used to process subgraphs G3 . and G4,. and
the results obtained are denoted as Yi ., i = 1, 2, 3, 4, 5, 6., see Fig. 8.9c, d and e.

Y1 = r31b32y33r34b35y36r37b38y39r40y41r42b43y44r45b46y47b48r49y50b51r52y53b54 .

r55y56r57b58y59r60y61;.
Y2 = r31b32y33r34b35y36r37b38y39r40y41r42b43y44r45b46r47b48r49y50b51r52y53b54 .

r55y56r57b58y59b60y61 .;
Y3 = r31b32y33r34b35y36r37b38y39r40y41r42b43y44r45b46r47b48r49y50b51r52y53b54 .

r55y56r57b58y59b60y61 .;
Y4 = r31b32y33r34b35y36r37b38y39b40y41r42b43y44r45b46y47b48r49y50b51r52y53b54 .

r55y56r57b58y59r60y61 .;
Y5 = r31b32y33r34b35y36r37b38y39b40y41r42b43y44r45b46r47b48r49y50b51r52y53b54 .

r55y56r57b58y59b60y61 .;
Y6 = r31b32y33r34b35y36r37b38y39b40y41r42b43y44r45b46r47b48r49y50b51r52y53b54 .

r55y56r57b58y59b60y61 ..

Mix the DNA sequence with a full length of 620 bp as a template, use <

r1, y61 >.as the primer pair, perform PCR amplification, and obtain a DNA sequence
set with a length of 1220 bp, representing the feasible solution library of graph
G. Use the same method to delete non-solutions, and the final DNA sequence
represents the solution that satisfies the normal 3-coloring of graph G. There are
8 DNA sequences, each representing 8 solutions (see Fig. 8.10). After sequencing,

8.3 Complexity Analysis 217

Fig. 8.10 The solution of the
graph G, M3 is the DNA
marker of 150 bp ladder.
Lanes 1–8 correspond to
solutions Z1 − Z8 . [1]

the solution that satisfies the normal 3-coloring of graph G is obtained, denoted as
Zi ., i = 1, 2, · · · , 8..

Z1 = r1b2y3r4y5b6r7y8r9b10y11r12b13y14r15b16r17y18b19r20b21y22r23 . b24y25r26 .

y27b28r29y30r31b32y33r34b35y36r37b38y39r40y41r42b43y44r45 . b46y47b48r49y50b51 .

r52y53b54r55y56r57b58y59r60y61 .;
Z2 = r1b2y3r4y5b6r7y8r9b10y11r12b13y14r15b16r17y18b19r20b21y22r23 .b24y25r26y27 .

b28r29y30r31b32y33r34b35y36r37b38y39r40y41r42b43y44r45 . b46y47b48r49y50b51r52 .

y53b54r55y56r57b58y59b60y61 . ;
Z3 = r1b2y3r4y5b6r7y8r9b10y11r12b13y14r15b16r17y18b19r20b21y22r23 .b24y25r26y27 .

b28r29y30r31b32y33r34b35y36r37b38y39b40y41r42b43y44r45 . b46y47b48r49y50b51r52 .

y53b54r55y56r57b58y59r60y61 .;
Z4 = r1b2y3r4y5b6r7y8r9b10y11r12b13y14r15b16r17y18b19r20b21y22r23 .b24y25r26y27 .

b28r29y30r31b32y33r34b35y36r37b38y39b40y41r42b43y44r45 . b46y47b48r49y50b51r52 .

y53b54r55y56r57b58y59b60y61 .;
Z5 = r1b2y3r4y5b6r7y8r9b10y11r12b13y14r15b16r17b18y19r20b21y22r23 .b24y25r26y27 .

b28r29y30r31b32y33r34b35y36r37b38y39r40y41r42b43y44r45 . b46y47b48r49y50b51r52 .

y53b54r55y56r57b58y59r60y61 .;
Z6 = r1b2y3r4y5b6r7y8r9b10y11r12b13y14r15b16r17b18y19r20b21y22r23 .b24y25r26y27 .

b28r29y30r31b32y33r34b35y36r37b38y39r40y41r42b43y44r45 . b46y47b48r49y50b51r52 .

y53b54r55y56r57b58y59b60y61 .;
Z7 = r1b2y3r4y5b6r7y8r9b10y11r12b13y14r15b16r17b18y19r20b21y22r23 .b24y25r26y27 .

b28r29y30r31b32y33r34b35y36r37b38y39b40y41r42b43y44r45 . b46y47b48r49y50b51r52 .

y53b54r55y56r57b58y59r60y61 .;
Z8 = r1b2y3r4y5b6r7y8r9b10y11r12b13y14r15b16r17b18y19r20b21y22r23 .b24y25r26y27 .

b28r29y30r31b32y33r34b35y36r37b38y39b40y41r42b43y44r45 . b46y47b48r49y50b51r52 .

y53b54r55y56r57b58y59b60 ..

8.3 Complexity Analysis

This section conducts a theoretical analysis of the model from the perspectives of
reducing the complexity of the initial solution space and enhancing the parallelism
of PCR operation methods. To facilitate comprehension, the calculation formula
for the DNA strands is introduced first. This formula can be employed to compute
the number of paths between any two vertices of a given graph, thus enabling path
counting.

218 8 Parallel Vertex Coloring DNA Computing Model

Lemma 8.1 Assume G is a n subgraph, and V (G) = {v1, v2, · · · , vn}. . A is the
adjacency matrix of G.. Then the number of paths from vertex vi . to vj .with a length
of l is the value at the (i, j).position in the matrix Al

. . Here Al
. is the matrix obtained

after l times A multiplication [4].

8.3.1 Analysis of Reducing the Complexity of the Initial
Solution Space

In order to reduce the initial solution space of the DNA computing model for solving
the graph vertex coloring problem, two methods are used in the model, which are
the subgraph partitioning method and the subgraph vertex color set determination
method given in Sects. 8.1.1 and 8.1.2. The introduction of the probe graph includes
all the information of these two methods. Using the probe graph, a calculation
formula for the number of different DNA sequences in the initial solution space in
the model can be further given. This formula can be given by the following theorem:

Theorem 8.2 Assume G is a n order graph, G1 . is a subgraph of graph G.. If
V (G1) = {v1, v2, · · · , vt }., and vertices v1 . and vt . are its two bridge vertices. Let
B(G). represent the probe graph of G1 .. Then the number of different DNA stands in
the initial solution space of G1 . is the number of paths from vertex v1 . to vertex vt .

with a length of t − 1. in graph B(G)., denoted as Np(v1, vt)., given by the following
formula:

.Np(v1, vt) = At−1(B(G1))(1, t − 1) (8.4)

Proof From the definition of the probe graph B(G)., it could be known that the
vertex xi . in B(G1). represents the color that the vertex vi . in the graph can be colored,
and the edge {xi, zi+1}. of B(G1). represents the probe formed between xi . and zi+1 .,
that is, it indicates that in the initial solution space, when the vertex vi . is colored as
x , vertex vi+1 . can be colored z , x, z ∈ {r, y, b}. . Therefore, any path from vertex
r1 . to vertex bt . in B(G1). represents a coloring of subgraph G1 ., and all paths from
vertex r1 . to vertex bt . represent all possible solutions in the initial solution space.

Further examining the structure of B(G1)., the graph can be divided into t groups,
where the subscript i represents the i group. From the definition of B(G1)., it could
be know that the i group is only connected to the i + 1. group, and there must be
a connection. Therefore, in the probe graph B(G1)., the length of each path from
vertex r1 . to vertex bt . can only be t − 1.. Therefore, by Lemma 8.1, this theorem is
proven. //
Corollary 8.1 The number of different DNA stands in the initial solution space
of subgraphs G1 ., G2 ., G3 . and G4 . shown in Fig. 8.2 are: 89, 81, 412 and 151
respectively; the proportions of non-solutions deleted from the enumeration-type
initial solution space are: 99.9998% , 99.9998% , 99.999% and 99.9997% .

Proof From Theorem 8.2, it could be known that the number of DNA stands in
the initial solution space of graph G1 . is the number of paths of length 15 between
vertices r1 . and b16 . in the probe graph B1 . (see Fig. 8.4) is N33(r1, b16)..

8.3 Complexity Analysis 219

In order to calculate N33(r1, b16)., first use Lemma 8.1 to give the adjacency
matrix A(B1). of graph B1 ..

. A(B1) =

⎡
⎢⎢⎣

0 1 1 0
1 0 0 1 0
1 0 0 1 1 0
0 1 1 0 0 0 1 0
0 0 1 0 0 1 0
0 0 0 0 1 0 0 1 1 0
0 0 0 1 0 0 0 0 1 0
0 0 0 0 0 1 0 0 0 0 1 0
0 0 0 0 0 1 1 0 0 1 0
0 0 0 0 0 0 0 0 1 0 0 1 0
0 0 0 0 0 0 0 1 0 0 0 1 1 0
0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 1 1 0 0 0 0 0
0 1 0 0 0 1 0 1 0 0 0 0 0
0 1 0 0 0 1 1 0 0 0
0 1 0 0 0 0 0 1 0 0 0
0 1 1 0 0 0 1 0 0 0 0
0 1 0 1 0 0 1 0 0
0 1 1 0 0 0 1 1 0
0 1 1 0 0 1
0 1 0 0 1
0 1 1 0

⎤
⎥⎥⎦

The correspondence between the labels of rows and columns in the adjacency
matrix and the vertices in the probe graph B1 . is as follows:

.

⎛
⎜⎜⎝

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
r1 y2 b2 r3 y3 r4 y4 y5 b5 y6 b6 r7 y7 r8 y8 r9 y9

18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
b9 r10 y10 b10 r11 y11 r12 y12 r13 y13 b13 y14 b14 r15 y15 b16

⎞
⎟⎟⎠

It is easy to calculate that A(B1)
15(1, 33). = 89. This shows that for the 3-

coloring of subgraph G1 ., the number of different DNA stands in the initial solution

220 8 Parallel Vertex Coloring DNA Computing Model

space representing all possible 3-colorings is 89. Compared with the DNA stands
316 .= 43046721 required by enumeration: 89

43046721 ≈ 0.000002 = 0.0002%.. That is
to say, when constructing the initial solution space of subgraph G1 . , 99.9998% of
non-solutions were deleted. Similarly, for subgraph G2 ., A(B2)

15(1, 32). = 81 ; for
subgraph G3 ., A(B3)

15(1, 35). = 412; for subgraph G4 ., A(B4)
15(1, 32). = 151. This

shows that in the construction of S(G2)., S(G3). and S(G2)., 99.9998% , 99.999%
and 99.9997% of non-solutions were deleted respectively. //

8.3.2 Enhancing Parallelism with PCR Technology

The following provides a detailed analysis of the mechanism by which the use of
parallel PCR technology can greatly reduce the number of biological operations.
First, a general method and steps for deleting non-solutions using parallel PCR are
given.

Let P = vi0 · · · vim . is a directed path in the subgraph G1 . with a vertex count
of m + 1. and an edge count of m.. Because the entire subgraph must be considered
during parallel PCR, two bridge vertices v1 . and vt . must be considered during the
PCR operation. Therefore, there are the following three cases:

Case 1 The two endpoints of the path are not bridge vertices of the subgraph, that
is, vi0 /= v1 . and vim /= vt . ; for this case, these two bridge vertices v1 . and vt . need
to be added, as shown in Fig. 8.11a.

Case 2 Exactly one of the two endpoints of the path is a bridge point of the
subgraph, that is, either vi0 = v1 . and vim /= vt . or vi0 /= v1 . and vim = vt .;
for this case, one bridge point vt . or v1 . needs to be added, as shown in Fig. 8.11b.

Case 3 Both endpoints of the path are bridge vertices of the subgraph, that is,
either vi0 = v1 . and vim = vt .; for this case, only the path P is considered, as
shown in Fig. 8.11c.

In fact, the above cases 2 and 3 can be considered as special cases of case 1. That
is, for cases 2 and 3, delete the edge adjacent to the bridge point: from the path P
in case 2, delete an edge vi0, vi1 . or vi(m−1), vim . to get a path similar to case 1 P '

.

; from the path P in case 3, delete two edges vi0, vi1 . and vi(m−1), vim . to get a path

Fig. 8.11 Three cases of
directed paths and bridge
vertices [1]

8.3 Complexity Analysis 221

Fig. 8.12 Schematic diagram
of the number of parallel PCR
operations [1]

similar to case 1 P ''
. . Therefore, only the path in case 1 is considered to introduce

the parallel PCR method.
According to the method in Fig. 8.11 to determine the number and order of

vertices in the directed path P = vi0vi2 · · · vim ., it is known that the number of
PCR amplifications is related to the number of vertices in the path P . The first
PCR operation is mainly to obtain the correct coloring scheme, and the primer pairs
required are: < v1, vi0 >., < vi0, vi1 >., · · · ., < vi(m−1), vim >., < vim, vt >.; the
second PCR is to connect the two adjacent fragments after the first PCR reaction;
the third is to connect the two adjacent fragments after the second PCR reaction,
and so on. Here, the cases with 5 vertices (i.e., two-edge paths) and 6 vertices (i.e.,
three-edge paths) are explained (Fig. 8.12), where the connecting edges represent
the parallel PCR amplification operations performed between two or more vertices.

Theorem 8.3 Let P be a directed path in the subgraph G1 . with an edge count of
x .. When 2l−1 < x ≤ 2l

. , define /x/ = 2l
.. The number of parallel PCR operations,

denoted as PCR(x)., should be

.PCR(x) = 1 + log2/x + 2/, x ≥ 1 (8.5)

Proof For case 1, the two endpoints of the path are not bridge vertices of the
subgraph, that is, vi0 /= v1 . and vim /= vt .; if the path P contains x edges, then
the number of vertices in the path is x + 1. , since this path does not contain bridge
vertices v1 ., vt ., according to the parallel PCR method, two more bridge vertices need
to be added, making the number of vertices x+3. (see Fig. 8.11a). Suppose x+2 = 2l

.

, the number of vertex pairs in the first PCR operation is the number of edges after
adding the bridge vertices v1 . and vt ., which is (x + 3) − 1 = x + 2 = 2l

.. According
to the definition of parallel PCR, the number of vertex pairs for the second operation
is (x + 2)/2., 2l−1

. , the number of pairs for the third PCR operation is 2l−2
., · · · . ,

222 8 Parallel Vertex Coloring DNA Computing Model

the number of pairs for the l PCR operation is 2l−(l−1)
. = 2 , the l + 1. operation can

complete all PCR operations, that is, it is inferred: when x + 2 = 2l
., the number

of PCR operations l + 1.. So PCR(x) = l + 1 = 1 + log2 2
l = 1 + log2/2l/ =

1+ log2/x+2/.. This proves that when x+2 = 2l
., the conclusion holds. Similarly, it

can be proved that when x+2 = 2l+1
., the conclusion holds, that is, PCR(x) = l+2..

Next, let’s prove the case of x + 2 = 2l + 1..
Similar to the above proof, the number of vertices of the path P is x + 1., plus

two bridge vertices, making the number of vertices x + 3., when x + 2 = 2l + 1.,
that is, x + 3 = 2l + 2. vertices, therefore, the number of pairs for the first PCR
operation is (x + 3) − 1 = x + 2 = 2l + 1.; the number of pairs for the second
operation is 2l−1 + 1., the number of pairs for the third PCR operation is 2l−2 + 1.,
· · · ., the number of pairs for the l PCR operation is 2l−(l−1) + 1. = 3 , the number of
operations for the l + 1. operation is 2, the l + 2. can complete all PCR operations.
On the other hand, substituting x + 2 = 2l + 1., we have: PCR(x) = l + 2 =
1 + (l+) = 1 + log2 2

l+1 = 1 + log2/2l + 1/ = 1 + log2/x + 2/. This proves that
when x + 2 = 2l + 1., the conclusion holds.

Since for any 2 ≤ y < 2l
., x + 2 = 2l + y ., the number of PCR operations

corresponding to it is not less than x + 2 = 2l + 1. corresponding to the PCR
operation, but not more than x + 2 = 2l+1

. corresponding to the PCR operation, and
both of these PCR operation times are l + 2., this proves that for any 2 ≤ y < 2l

.,
x + 2 = 2l + y . , the conclusion holds.

As mentioned above, the second and third situations in Fig. 8.12 can eventually
be converted into the first situation, so this theorem is proved. //

Theorem 8.3 fully characterizes the relationship between the length of the
forward path x and the number of PCR operations during parallel PCR operations.
Obviously, parallel PCR operations can greatly reduce the number of operations,
greatly improving the running speed of the DNA computer. Table 8.2 and the
curve in Fig. 8.13 shows the advantages of parallel PCR. In Table 8.2, x represents
the number of edges, 3x and PCR(x). respectively represent the number of PCR
operations corresponding to the edge deletion and parallel PCR methods.

Table 8.2 Comparison of the number of PCR operations between edge deletion and parallel PCR
methods

x 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

PCR(x). 3 3 4 4 4 4 5 5 5 5 5 5 5 5 6

3x 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45

x 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

PCR(x). 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6

3x 48 51 54 57 60 63 66 69 72 75 78 81 84 87 90

8.3 Complexity Analysis 223

Fig. 8.13 Curve of the
number of PCR operations
with edge-by-edge deletion
and parallel PCR methods,
where x represents the
number of edges in the
forward path P , y represents
the number of PCR
operations [1]

Corollary 8.2 Assume P is a forward path in the subgraph G1 . with x edges, then
the following conclusion can be drawn:

. lim
x→∞

log2/x + 2/ + 1

3x
= 0 (8.6)

Proof Let x + 2 = 2l + y ., 1 ≤ y < 2l
.. Then /x + 2/ = 2l+1 = 2(2l + y − y) <

2(2l + y).; also because 2l > y ., 2l + 2l > y + 2l
., that is, 2l+1 > y + 2l

., thus we
have: y + 2l < 2l+1 < 2(2l + y)., this is

. x + 2 < /x + 2/ < 2(x + 2)

thus we have

. log2(x + 2) < log2/x + 2/ < log22(x + 2)

Therefore,

.
1 + log2(x + 2)

3x
<

1 + log2/x + 2/
3x

<
1 + log22(x + 2)

3x
,

By L’Hopital’s rule, we have

. lim
x→∞

log2(x + 2) + 1

3x
= lim

x→∞
log2 2(x + 2) + 1

3x
= 0

Thus, this corollary is proven. //
Corollary 8.2 indicates that as the number of edges in the forward path P in the

subgraph increases, the advantage of the parallel PCR method becomes greater, that
is, the speed of DNA computation becomes faster. Since each PCR takes a long
time, about half an hour, this further highlights the advantage of the parallel PCR
method.

224 8 Parallel Vertex Coloring DNA Computing Model

The article discusses in detail the DNA computing model for parallel graph
vertex coloring. This model uses the decomposition and merging of graphs and
the use of parallel PCR technology, not only greatly reducing the complexity of
the initial solution space constructed, but also greatly reducing the complexity of
biological computation. The parallel DNA computing model is designed around
how to overcome the problem of exponential explosion of the solution space and
improve the scale of computation. It can not only eliminate 99% of the non-
feasible solutions when constructing the initial solution space, but also use DNA
self-assembly and parallel PCR methods to obtain solutions through identification,
splicing, and assembly techniques. This model can be used to solve the graph
coloring problem with 61 vertices. This example is also the largest scale problem
solved by DNA computation to date. However, as the scale of the problem continues
to increase, the number of basic DNA sequences required will also increase, which
involves the encoding problem mentioned in Chap. 5.

References

1. Xu, J., Qiang, X., Zhang, K. et al.: A DNA computing model for the graph vertex coloring
problem based on a probe graph. Engineering 4: 61–77 (2018).

2. Adleman, L.M.: Molecular computation of solutions to combinatorial problems. Science
266(5187): 1021–1024 (1994).

3. Zhang, K., Pan, L., Xu, J.: A global heuristically search algorithm for DNA encoding. Progress
in Natural Science 17(6):745–9 (2017).

4. Biggs, N.: Algebraic graph theory. Cambridge University Press, Cambridge (1993).

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

Chapter 9
Probe Machine

This chapter introduces an underlying fully parallel computing model—the probe
machine [1]. Unlike traditional Turing machines, the probe machine overcomes
the limitations of sequential computation by enabling any two data to process
information simultaneously without relying on linear adjacency. This fully parallel
computing mechanism makes the probe machine highly efficient in solving complex
problems, typically requiring only one or a few probe operations to obtain all
solutions. The design of the probe machine emphasizes efficient parallelism, and its
computational power significantly surpasses that of traditional models, particularly
in solving large-scale problems. This chapter will introduce the probe machine from
six perspectives: the background of its creation, its fundamental principles, typical
applications, biological computation implementation, the relationship between the
probe machine and biological neural networks, and an analysis of the machine’s
functions. The goal is to highlight its scientific value and potential applications.1

9.1 Background of the Probe Machine

Computing tools are indispensable instruments in human society and civilization,
continuously evolving alongside human development progress. Human civilization
has progressed through five key stages: the Stone Age, the Iron Age, the Steam
Age, the Electric Age, and the Information Age. During each stage, computing tools
have evolved significantly—from simple to complex, from low-level to high-level.
Beginning with rudimentary methods such as knotting records, counting rods, and
abacuses, and progressing through slide rules, mechanical computers, and ultimately

1 The content presented in this chapter is largely based on the author’s previously published work
[1], with permission from IEEE Transactions on Neural Networks and Learning Systems, Jin Xu,
“Probe Machine”, 2016; all rights reserved.

© The Author(s) 2025
J. Xu, Biological Computing, https://doi.org/10.1007/978-981-96-3870-3_9

225

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-96-3870-3protect T1	extunderscore 9&domain=pdf
https://doi.org/10.1007/978-981-96-3870-3_9
https://doi.org/10.1007/978-981-96-3870-3_9
https://doi.org/10.1007/978-981-96-3870-3_9
https://doi.org/10.1007/978-981-96-3870-3_9
https://doi.org/10.1007/978-981-96-3870-3_9
https://doi.org/10.1007/978-981-96-3870-3_9
https://doi.org/10.1007/978-981-96-3870-3_9
https://doi.org/10.1007/978-981-96-3870-3_9
https://doi.org/10.1007/978-981-96-3870-3_9
https://doi.org/10.1007/978-981-96-3870-3_9
https://doi.org/10.1007/978-981-96-3870-3_9

226 9 Probe Machine

to today’s electronic computers, these tools have played crucial roles in advancing
various historical epochs.

Conceptually, a computer is a machine made from materials that can implement
a computing model. For example, the computing model of today’s electronic
computer is the Turing machine [2], and the material that implements this model is
electronic components [3]. The Turing machine is a mathematical model established
by Turing to solve the “decidability of the solvability of Diophantine equations”.
This problem is the 10th of the 23 problems proposed by Hilbert at the International
Congress of Mathematicians held in Paris, France in August 1900. The Turing
machine consists of a finite controller, an infinitely extendable tape, and a read-write
head that can move left and right on the tape.

In 1945, von Neumann established the electronic computer system architecture
with the Turing machine as the computing model, using diodes, triodes, etc. as
the main materials to implement this model. In February 1946, the first general-
purpose electronic digital computer ENIAC based on this system architecture was
successfully developed. To this day, the development of electronic computers has
mainly gone through four stages: electronic tube digital computers, transistor digital
computers, integrated circuit digital computers, and large-scale integrated circuit
computers.

Research has found that computing devices based on Turing machines (such as
electronic computers) astonishingly follow Moore’s Law [4] in their development
process. Therefore, scientists have explored new computing models for half a
century to develop more powerful computers. In 2011, on the 100th anniversary
of Turing’s birth, a global call was made for new computing models that surpass the
Turing machine. The motivations mainly include two aspects: First, the manufac-
turing technology of electronic computers is about to reach its limit, as the famous
theoretical physicist Kaku predicted in 2012 that the manufacturing technology of
semiconductors will reach its limit within ten years; Second, due to the Turing
machine model, electronic computers have always been unable to handle large-scale
NP-complete problems.

Various approaches such as bionic computing (including neural networks, evolu-
tionary computing, and particle swarm optimization), optical computing, quantum
computing, and biological computing have been proposed in exploring new com-
putational models. Both the bionic and optical computing models are comparable
to the Turing machine’s computational power. This is because bionic computing is
carried out using electronic computers. Although optical computing relies on optical
devices for implementation, its computational model is still fundamentally based on
the Turing machine [5–7].

The best effect of quantum computing in dealing with NP-complete problems is:
if the complexity of a certain algorithm under the Turing machine is n, then under
the quantum computing model, its complexity can be reduced to

√
n. [8–10]. There-

fore, the quantum computing model has not actually surpassed the Turing machine
model. In contrast, in the research of biological computing, people seem to have
seen the dawn of surpassing the Turing machine. As a nanoscale DNA molecule for
data, the huge parallelism during specific hybridization makes it possible for DNA

9.2 Principle of Probe Machine 227

computing to quickly solve certain scale NP-complete problems. Early models of
DNA computing include the computing models proposed by Adleman and others
[11], the paste model [12], the self-assembly model [13–15], the non-enumerative
DNA computing model [16], and parallel DNA computing model [17]. These
models use nucleic acid molecules’ characteristics to increase computing speed
greatly, but there are still many non-solutions in the computing process. In recent
years, many computing models/architectures based on neural networks have been
proposed to solve complex problems. For example, Hu and others [18] proposed a
hardware-based training scheme to alleviate (or even eliminate) most of the noise.
Duan and others [19] introduced a honeycomb nonlinear/neural network based on
memristors. Gong and others [20] proposed a multi-objective sparse feature learning
model for deep neural networks. Xia and others [21] proposed a dual-projection
neural network to solve a class of constrained quadratic optimization problems.

It has been proven that the above computing models are equivalent to the Turing
machine in terms of computability, but different models will lead to different
computational effectiveness.

9.2 Principle of Probe Machine

Before introducing the mathematical model of the probe machine, let’s first analyze
the mechanism of the Turing machine.

9.2.1 Analysis of Turing Machine Mechanism

Consider the following two challenging questions: (1) Why do computers based
on Turing machines always generate many non-solutions in solving NP-complete
problems? (2) Why are all existing computing models equivalent to the Turing
machine? We answer these two questions by characterizing the mechanism of the
probe machine from two aspects.

9.2.1.1 Linear Data Placement Mode

Existing computing devices rely on traditional data storage methods, known as
the data placement mode, during their computation process. Whether it is today’s
electronic computers or future generations of computing devices, the data placement
modes employed can generally be classified into three types: one-dimensional, two-
dimensional, and three-dimensional. For example, the data in electronic computers
is stored in a linear fashion, making its data placement mode one-dimensional. In
contrast, the data placement mode of the probe machine, which will be introduced
later, is three-dimensional.

228 9 Probe Machine

Throughout the development of human civilization over thousands of years,
whether in writing or recording numbers, data has typically been recorded
sequentially—either from left to right or from top to bottom. This means that data
units have been placed or stored linearly. Influenced by this “mode of thinking,” all
computing tools created by humans, from the earliest methods of knotting records
and stone carvings to the abacus and modern Turing machine-based electronic
computers, have followed this linear approach for storing and processing data. We
refer to this sequential data arrangement as the linear placement mode. Under this
mode, only adjacent data units can interact with each other, which significantly
constrains the potential of the data and limits the computational power of these
tools. All of the computing models mentioned earlier are subject to this limitation.
For instance, when a computer program attempts to solve an NP-complete problem,
the initial solution space often contains many suboptimal solutions, making it akin
to searching for a needle in a haystack. The linear placement mode is the underlying
cause of this large pool of non-optimal solutions, which hinders the search for the
true solution.

9.2.1.2 Serial Data Processing Mode

A Turing machine-based computing tool processes only two adjacent data units
during each computation in the linear data placement mode. We refer to this mode of
data processing as serial. The serial data processing mode contributes to the presence
of many non-optimal solutions in the initial solution space when solving problems.

Since bionic computing, quantum computing, and DNA computing models all
employ linear data placement and serial data processing modes, similar to Turing
machines, these computing models are essentially equivalent to Turing machines.

The previous discussion highlights that the two main factors limiting the
computational power of the Turing machine are the linear data placement and
serial data processing modes. Therefore, these two constraints must be overcome
to achieve a computational model with greater (and more effective) computational
power than the Turing machine. Specifically, each operation must be capable of
processing multiple data pairs simultaneously. In other words, data must be placed
as adjacent as possible, meaning the data placement mode must be non-linear. This
is the motivation behind the proposal of the probe machine. The probe machine’s
data placement mode is spatially unconstrained, allowing any pair of data units to
interact and process information directly.

9.2.2 Mathematical Model of the Probe Machine

This section presents the mathematical model of the probe machine, including the
database, probe library, data controller, probe controller, probe operation, computing
platform, detector, true solution storage, and residual support recycler.

9.2 Principle of Probe Machine 229

The probe machine, denoted as PM , can be defined as a 9-tuple,

. PM = (X, Y, σ1, σ2, τ, λ, η,Q,C)

where, X represents the database, Y represents the probe library, σ1 . represents the
data controller, σ2 . represents the probe controller, τ . represents the probe operation,
λ. represents the computing platform, η . represents the detector, Q represents the true
solution storage, and C represents the residual support recycler. Next, we will define
and explain these nine elements one by one.

9.2.2.1 Database X

The database of the probe machine defines a non-linear data placement mode. The
database X consists of n data pools X1, X2, . . . , Xn ., that is, X = {X1, X2, . . . , Xn}..
For each i ∈ {1, 2, . . . , n}., only one type of data xi . is stored in the data pool Xi ., and
xi . is massive, as shown in Fig. 9.1a and b. When only considering the type of data
in the database X, X is regarded as a set of n elements, which can be represented as
X = {x1, x2, . . . , xn}..

For i ∈ {1, 2, . . . , n}., data xi . consists of two parts: one is called a data cell, and
the other is called a data fiber. There is only one data cell, and there are pi . types
of data fibers denoted as x1

i , x2
i , . . . , x

pi

i ., where each type of data fiber xl
i . contains

a massive number of identical copies in the data. The data cell is connected to the
data fiber, and the same type of data fiber is distributed in the same connected area.
Figure 9.1c shows a schematic diagram of the structure of data xi .: The small ball
represents the data cell (as shown in Fig. 9.1d); a connected area of the small ball
represents the same type of data fiber; pi . different color lines represent pi . types of
data fibers x1

i , x2
i , . . . , x

pi

i .; and I(xi). represents the set of all pi . types of data fibers
in xi ., that is, I(xi) = {x1

i , x2
i , . . . , x

pi

i }..
Assume that the database X has n different data types, denoted as x1, x2, . . . , xn ..

Let pi . represent the number of types of data fibers in xi . and use i to represent the

Data
Library

1X 2X

3XnX
iX

iX

()a ()b ()c ()d

1

ix

2

ix

3

ix

ip
ix

Fig. 9.1 Schematic diagram of the database [1]. (a) Database. (b) Data pool Xi .. (c) Data xi .. (d)
Data cell

230 9 Probe Machine

data cell of xi .. Then, the data xi . can be represented as

.xi = {i; x1
i , x2

i , . . . , x
pi

i } (9.1)

Assume that the data fibers belonging to different data are different, and let p
represent the number of types of data fibers in the database. Then,

.p = p1 + p2 + . . . + Pn (9.2)

Based on the above assumption, the following four points about the database X .

in the probe machine are emphasized:

1. The database X . contains n. types of data and p . types of data fibers.
2. Each data pool Xi . contains an abundant amount of data, denoted by xi ., meaning

that this data is inexhaustible, where i = 1, 2, . . . , n..
3. Each data pool xi . is equipped with a controllable output system, referred to as

the data controller, which will be introduced later.
4. The database X . can be represented in the form of the following matrix:

. X =
⎛
⎜⎝

x1
1 x1

2 . . . x1
n

...
. . .

...

x
p1
1 x

p2
2 . . . x

pn
n

⎞
⎟⎠

where the ith (1 ≤ i ≤. n) column of X corresponds to all pi . types of data fibers in
data xi .. When i l= t (1 ≤ i, t ≤ n)., it is possible pi l= pt ., so X can be regarded as a
matrix with a column number of n and unequal rows.

9.2.2.2 Probe Library

A probe is a device used to detect specific substances. The concept of a probe
spans multiple fields, including biology, computer science, electronics, information
security, and archaeology. Below, we provide a brief overview of its application in
two key areas: biology and electronics.

In biology, probes are used to detect specific nucleic acid sequences. Typically,
probes are short segments of single-stranded DNA or RNA, ranging from 20 to
500 base pairs in length. These probes are designed to be complementary to the
target nucleic acid sequence. The process begins by heating double-stranded DNA
to denature it into single strands or synthesizing single-stranded DNA molecules.
The resulting single-stranded DNA can then be labeled using various methods, such
as radioactive isotopes, fluorescent dyes, or enzymes. This labeled single-stranded
DNA forms the probe. During the detection process, the probe hybridizes with the
target sequence in the sample. If the probe is complementary to the target sequence,
it will bind via hydrogen bonds. Any unhybridized excess probe is washed away,
and methods like radioactive autoradiography, fluorescence microscopy, or enzyme-

9.2 Principle of Probe Machine 231

linked amplification are employed to determine whether the target sequence is
present and to locate its position within the sample.

In electronics, probes are used for various types of electronic testing, and
they can be categorized based on their specific applications. One type is the
printed circuit board (PCB) test probe, which tests circuit boards before component
installation, primarily to detect issues such as short circuits. Another type is the
online test probe, which inspects PCB circuit boards with installed components.
Lastly, microelectronic test probes are typically used for wafer testing or integrated
circuit (IC) chip detection.

Although similar to the existing concept of a probe, the probe discussed in
this section is more abstract. Figuratively speaking, it functions like a “glue” that
discovers and associates two data. Its precise definition is as follows: Let xl

i . and xm
t .

represent two data fibers of data xi .. The probe between xl
i . and xm

t . is denoted as

τxl
i x

m
t .. This probe is an operator, commonly referred to as the probe operator, which

must satisfy the following three conditions:

1. Adjacency: In the computing platform λ., τxl
i x

m
t . must be capable of accurately

locating xl
i . and xm

t ..

2. Uniqueness: In the computing platform λ., τxl
i x

m
t . should only associate xl

i . with
xm
t ., without involving any other data fibers.

3. Probability: In the computing platform λ., τxl
i x

m
t . must be able to perform a

specific attribute probe operation (such as a connect operation, transmission
operation, etc.) while identifying xl

i . and xm
t .. The result of the operation is

recorded as τxl
i x

m
t (xi, xt)..

If there exists a probe τxl
i x

m
t . between two data fibers xl

i . and xm
t . in the database,

then xl
i . and xm

t . are considered probable, and xl
i . and xm

t . are referred to as the probe

objects of the probe τxl
i x

m
t .. Consequently, the data xi . and xt . are also considered

probable. Conversely, if no probe exists between xl
i . and xm

t ., then xl
i . and xm

t . are
non-probable. Furthermore, if no probe exists between any pair of data fibers from
xi . and xt ., then xi . and xt . are non-probable.

Let Xl ⊆ X . represent any subset of the database X .. We denote the set of probe
operators corresponding to all probable data pairs in Xl

. as τ(Xl)., and refer to it
as the probe subset of Xl

.. Below, we introduce two types of probe operators in
the probe machine: connection-type probe operators (connection operators) and
transmission-type probe operators (transmission operators).

(1) Connected Operator
The connection-type probe operator for data fibers xl

i . and xm
t ., commonly referred

to as the connection-operator, is the probe operator τxl
i x

m
t . that establishes a

connection between the target data fibers xl
i . and xm

t .. To distinguish different types

of probe operators, we use xl
i x

m
t . to represent the connection-operator that links xl

i .

and xm
t .. It is important to note that the connection-operator xl

i x
m
t . and xm

t xl
i . refer

to the same probe operator, meaning the connection-operator does not distinguish
the direction of the connection between the two data fibers. In the computing

232 9 Probe Machine

Fig. 9.2 Schematic diagram of the connection operator action process [1]. (a) Two data. (b)
Connection probe. (c) Probe operation

platform λ., the connection operator can identify and establish a connection between
the target data fibers. This concept is illustrated in Fig. 9.2. In Fig. 9.2a, we show
a schematic diagram of the structure of data xi . and xt .. Figure 9.2b depicts the

connection-operator xl
i x

m
t ., which can be interpreted as a complementary sequence

formed by half of the data fibers taken from xl
i . and xm

t . (specifically, the half not
connected to the data cell). This complementary sequence can adsorb and connect
the target data fibers, thereby linking the two data fibers xl

i . and xm
t . together and,

consequently, connecting the data xi . and xt .. More precisely, the connection of data
xi . and xt . is achieved through the connection of data fibers xl

i . and xm
t .. The symbol

xl
i x

m
t (xi, xt)

l= xix
xl
i x

m
t

t . represents the result of the connected operator’s action, as
shown in Fig. 9.2c.

We refer to the data fibers capable of processing information through the
connection-operator as connection-type data fibers, and the corresponding data
as connection-type data. Typically, connection-type data refers to data where all
the data fibers are connection-type data fibers. If every data in the database is
connection-type data, we call this database a connection-type database.

In Fig. 9.2, we can abstractly consider xl
i . and xm

t . as two DNA strands embedded
in nanoparticles, where data cells are represented by nanoparticles embedded in

data fibers. Then, the connection-operator xl
i x

m
t . can be seen as formed by the

complementary strands of half of the DNA strands representing data fibers xl
i . and

xm
t ., connected by hydrogen bond attraction.

The connection operator is a formal mathematical abstraction derived from
several real-world instances, with the biological probe as an example. From the
definition of the connection operator, its primary function is to locate and connect
two target data fibers. Therefore, the connection operator does not consider the
direction of the connection. In contrast, the transmission operator described below
has a specific direction.

(2) Transmission Operator
Assume that all data fibers on data xi . and xt . carry information, as shown in
Fig. 9.3a. The transmission-type probe operator for data fibers xl

i . and xm
t ., also

known as the transmission-operator, is the probe operator τxl
i x

m
t . that transmissions

the information from the source data fiber xl
i . to the destination data fiber xm

t .. This

9.2 Principle of Probe Machine 233

Fig. 9.3 Schematic diagram of the transmission operator action process [1]. (a) Two data. (b)
Transmission probe. (c) Probe operation

operator is represented by the symbol
−−→
xl
i x

m
t .. Unlike the connection operator, the

transmission operator distinguishes the connection direction between the two data

fibers. Specifically,
−−→
xl
i x

m
t . and

−−→
xm
t xl

i . represent different transmission operators. In
the computing platform λ., the transmission operator can identify the target data
fibers (source and destination) and transmission the information from xl

i . to xm
t .

by establishing a connection between them. This process is illustrated in Fig. 9.3.
Figure 9.3a shows the structure of data xi . and xt ., while Fig. 9.3b depicts the
transmission operator for xl

i . and xm
t .. Figure 9.3c illustrates the result obtained after

applying the transmission operator. The process can be described as follows:

1. The transmission operator
−−→
xl
i x

m
t . locates and connects the data fibers xl

i . (source
data fiber) and xm

t . (destination data fiber).
2. It then performs operations on the source data fiber xl

i ., transmitting the informa-
tion it contains to the destination data fiber xm

t ..

We use the symbol
−−→
xl
i x

m
t (xi, xt)

l= xix

−−→
xl
i x

m
t

t . to represent the result after the

transmission operator
−−→
xl
i x

m
t . has been applied.

Data fibers processing information through the transmission operator are called
transmission data fibers, and the corresponding data are called transmission data.
Usually, transmission data refers to the data that contains only transmission data
fibers. If every data in the database is transmission data, then this database is called
a transmission database.

(3) Probe Library Construction
Based on the database, a probe library can be constructed, which satisfies the
following two principles:

1. No probe exists between any pair of data fibers xl
i . and xt

i . on the same data xi .,
where 1 ≤ i ≤ n. in the database X = {x1, x2, . . . , xn}..

2. A probe may exist between any pair of data fibers xl
i . and xm

t ., where xl
i . is from

data xi . and xm
t . is from data xt ., and i l= t ..

234 9 Probe Machine

Based on the above two principles, the probe libraries constructed on the
connection-type and transmission-type databases are referred to as the connection-
type and transmission-type probe libraries, respectively. The connection-type and
transmission-type probe libraries store connection operators and transmission oper-
ators, respectively. The following proposition holds.

Proposition 9.1 Let X = {x1, x2, . . . , xn}. be the database of the probe machine,
where each data xi . contains pi . types of data fibers, i = 1, 2, . . . , n., If X is
a connection-type database, then its corresponding connection-type probe library
contains at most 1

2 {p2 − (p2
1 + p2

2 + . . . + p2
n)}. different connection operators; if

X is a transmission-type database, then its corresponding transmission-type probe
library contains at most p2 − (p2

1 +p2
2 + . . .+p2

n). different transmission operators.

Proof For the connection-type database, if each data fiber is represented as a vertex,
an edge is linked between two distinct vertices if and only if there is a connection
operator between the data fibers represented by these two vertices. According to the
first property of the probe library, the graph G. constructed using this method is an
n.-partite undirected simple graph, where the n. parts correspond exactly to the n. data
elements x1, x2, . . . , xn ., and the number of vertices in the i .th part is denoted by pi .

for i = 1, 2, . . . , n.. Thus, the number of edges in G. corresponds to the number of
distinct connection operators in the connection-type probe library. Therefore, based
on the second property of the probe library, when G. is a complete n.-partite graph,
the number of edges (or the number of connection operators) is maximized and is
given by:

.
1

2

l
p2 −

l
p2

1 + p2
2 + . . . + p2

n

ll

Similarly, for the transfer-type database, if each data fiber is represented as a
vertex, a directed edge is linked between two distinct vertices (data fibers) xl

i . and

xm
t . if and only if there is a transfer operator

−−→
xl
i x

m
t ., where xl

i . is the source data fiber
and xm

t . is the destination data fiber. Based on the first property of the probe library,
the graph constructed using this method is a directed n.-partite graph G., where the n.

parts correspond exactly to the n. data elements x1, x2, . . . , xn ., with the number of
vertices in the i .th part denoted by pi . for i = 1, 2, . . . , n.. The number of directed
edges in G. corresponds to the number of distinct transfer operators in the transfer-
type probe library. Therefore, based on the second property of the probe library,
when G. is a complete n.-partite directed graph (i.e., there is a directed edge between
every ordered pair of vertices), the number of directed edges (or the number of
transfer operators) is maximized, and is given by:

. p2 −
l
p2

1 + p2
2 + . . . + p2

n

l

ll

9.2 Principle of Probe Machine 235

()a ()b ()c

Connective
Probe
Library

itY

1nY12Y
itY

ab
itY

a b
i tx x

ab
itY

Fig. 9.4 Schematic diagram of the connection-type probe library [1]. (a) Connection probe library.
(b) Sub-probe library. (c) Probe pool

According to the construction principle of the probe library, the structure of the
probe library can be composed of sub-probe libraries. Based on the database X =
{x1, x2, . . . , xn}., the set of all possible probes between data xi . and xt . is called an
(i, t).-complete sub-probe library, denoted as Yit ., where i, t = 1, 2, . . . , n, i l= t ..
When not distinguishing specific data, Yit . is called the complete sub-probe library.
All complete sub-probe libraries constitute the probe library Y , that is

. Y =
l l

i,j=1,2,...,n,i l=j

Yij

Based on the previous definition, it is evident that for the connection-type probe
library, Yit = Yti .. Therefore, the connection-type probe library Y . consists of
n(n−1)

2 . complete sub-probe libraries, as illustrated in Fig. 9.4a. Figure 9.4b shows
the schematic diagram of the structure of the complete sub-probe library Yit .. Since
data xi . and xt . contain pi . and pt . types of data fibers, respectively, Yit . contains a total
of pi ×pt . probes, that is, |Yit | = pi ×pt .. The following formula gives the elements
contained in Yit .:

. Yit = {x1
i x1

t , x1
i x2

t , . . . , x1
i x

pt
t ; x2

i x1
t , x2

i x2
t , . . . , x2

i x
pt
t ;

. . . ; x
pi

i x1
t , x

pi

i x2
t , . . . , x

pi

i x
pt
t } (9.3)

For each a = 1, 2, . . . , pi . and b = 1, 2, . . . , pt ., a probe pool is constructed

to store the probe operator xa
i xb

t . in Yit ., and we denote this probe pool by Yab
it . (as

shown in Fig. 9.4c). Note that Yab
it . only stores the probe operator of this type, xa

i xb
t .,

and the amount stored is sufficient.
For the transmission-type probe library, since Yit l= Yti ., there are a total of n(n−

1). types of complete sub-probe libraries, which is exactly twice the number of types
of complete sub-probe libraries in the connection-type probe library, as illustrated in
Fig. 9.5a. Additionally, the types of probe operators contained in the complete sub-

236 9 Probe Machine

(1)n nY

()a ()b ()c

21Y

1nY12Y itY

a b
i tx x

ab
itY

21Y2

1n it

a b
i tx x

itY
Transitive
Probe
Library ab

itY

Fig. 9.5 Schematic diagram of the transmission type probe library structure [1]. (a) Transmission
probe library. (b) Sub-probe library. (c) Probe pool

probe library in the transmission-type probe library are exactly twice the number
of probe operators contained in the complete sub-probe library in the connection-
type probe library. Figure 9.5b shows the schematic diagram of the structure of the
transmission-type complete sub-probe library Yit ., which contains a total of 2pipt .

probes, as given by the following formula:

. Yit = {−−→x1
i x1

t ,
−−→
x1
t x1

i , . . . ,
−−−→
x1
i x

pt
t ,

−−−→
x

pt
t x1

i ; . . . ;−−−→
x

pi

i x1
t ,

−−−→
x1
t x

pi

i , . . . ,
−−−→
x

pi

i x
pt
t ,

−−−→
x

pt
t x

pi

i }
(9.4)

Similarly, for each a = 1, 2, . . . , pi . and b = 1, 2, . . . , pt ., a probe pool is

constructed to store the probe operator
−−→
xa
i xb

t . in Yit ., and we denote this probe pool
by Yab

it . (as shown in Fig. 9.5c). It is important to note that Yab
it . stores only the probe

operator of this specific type,
−−→
xa
i xb

t ., and the amount stored is sufficient.

9.2.2.3 Data Controller σ1 . and Probe Controller σ2 .

The data controller, denoted by σ1 ., is responsible for extracting the required amount
of data from the data pool and transmitting it to the computing platform λ.. Each data
pool is equipped with its own controller, meaning that the number of data controllers
in the database equals the number of data pools, with a total of n. data controllers.

The probe controller, denoted by σ2 ., is responsible for extracting the required
number of probes from the probe pool and sending them to the computing
platform λ.. Each probe pool is equipped with a controller, so the number of
probe controllers in the probe library corresponds to the number of probe pools.

Therefore, the connection-type probe library contains a total of
p2−(p2

1+p2
2+...+p2

n)

2 .

probe controllers, while the transmission-type probe library contains a total of
p2 − (p2

1 + p2
2 + . . . + p2

n). probe controllers.

9.2 Principle of Probe Machine 237

9.2.2.4 Probe Operation τ .

The probe operation is used to identify and connect target data fibers. Specifically,
for two probeable data elements, xi . and xt ., in the database, let xl

i . and xm
t . be the data

fibers on xi . and xt ., respectively. The basic probe operation consists of two stages:
the preparation stage and the execution stage. In the preparation stage, under the
control of the data controller and the probe controller, both the data elements xi . and
xt ., along with the probe operator τxl

i x
m
t ., are placed into the computing platform λ.,

allowing the operator τxl
i x

m
t . to identify and locate xl

i . and xm
t .. In the execution stage,

the probe operator τxl
i x

m
t . acts on xl

i . and xm
t . to perform the required operations.

The probe operation is a process in which multiple basic probe operations are
executed simultaneously. Its formal definition can be described as follows: Let Xl

.

be a subset of the database X ., and Y l
.be a subset of the probe library τ(Xl).. Based on

the probe operation on Xl
. and Y l

., represented by the symbol τ ., the result is obtained
after the probe subset Y l

. acts on the data subset Xl
.. In other words, each probe

operator in Y l
. acts on the corresponding data pairs in Xl

.. All probe operators in Y l
.

simultaneously perform their respective basic probe operations on the corresponding
data elements in Xl

.. The result of this operation is referred to as the solution of τ .,
denoted by Θ .. That is:

.τ(Xl, Y l) = Θ (9.5)

What is Θ .? This question is intricately linked to the computing platform λ.. To
address this, the concept of the probe operation graph is introduced. The probe
operation graph associated with a data subset Xl

. and a probe subset Y l
., denoted as

G(Xl,Y l)
., refers to the topological structure of the true solution aggregate after the

probe operation. The vertex set V (G(Xl,Y l)). represents the data in the true solution
aggregate, while the edge set E(G(Xl,Y l)). represents the probes in the true solution
aggregate. For specific problems, the probe operation graph can be determined,
and its primary function is to identify the solution. For example, when solving the
Hamiltonian cycle problem in subsequent sections, the probe operation graph may
be either a 4-cycle or a 5-cycle. When solving the vertex coloring problem of a
graph G., the probe operation graph corresponds to the graph G. itself. In the case of
the maximum clique problem for a given graph G., the probe operation graph is the
topological structure corresponding to the largest clique.

In fact, the probe operation can be viewed as a reaction process: the object of the
reaction is the data subset Xl

., the executor of the reaction is the probe operator in
Y l

., and the carrier of the reaction is the computing platform λ.. Next, we will provide
a detailed introduction to the structure and properties of the computing platform λ..

238 9 Probe Machine

TRUE
SOLUTIONRESIDUE

DETECTER

TRUE
SOLUTIONRESIDUE

DETECTER

Fig. 9.6 Schematic diagram of the computing platform, detector, true solution storage, and
residual branch collector [1]. (a) Connection type. (b) Transmission type

9.2.2.5 Computing Platform λ.

The computing platform, denoted as λ., serves as a specialized environment for
performing probe operations. Its primary function is to assist the probe operator in
quickly and accurately locating the target data fibers and executing the correspond-
ing basic probe operations. The structure of the computing platform is depicted
in Fig. 9.6, where Fig. 9.6a illustrates the connection-type computing platform, and
Fig. 9.6b shows the transmission-type computing platform. We define an aggregate
that connects two data elements via a corresponding probe as a 2-data aggregate.
Similarly, if a 2-data aggregate can be further combined with another data element
through a probe operator, the resulting entity is referred to as a 3-data aggregate.
By extension, if an aggregate is formed through several probe operations based on
m ≥ 2. data elements, it is called an m.-data aggregate, where m. denotes the order
of the aggregate. In particular, each individual data element xi ., for i = 1, 2, . . . , n.,
is termed a 1-data aggregate. Aggregates are typically represented by the symbol M .

or with a subscript for more specific cases, and the order of an aggregate is denoted
by |M|..

The computing platform λ. has three fundamental functions.

Function 1: High Aggregation When the probe τxl
i x

m
t . is placed into the computing

platform λ., the platform seeks two target data fibers, xl
i . and xm

t ., that can generate
higher-order data aggregates. Specifically, the following principles are adhered to:

1. Let M1 ., M2 ., and M3 . be three data aggregates in the computing platform λ., where
M1 . contains the data fiber xl

i ., and both M2 . and M3 . contain the data fiber xm
t .. If

xl
i . and xm

t . are probeable, and if |M2| > |M3|., the platform will guide τxl
i x

m
t . to

select xl
i . in M1 . and xm

t . in M2 . for the basic probe operation.
2. Suppose M1 . and M2 . are two data aggregates in the computing platform λ., where

both M1 . and M2 . contain data xi . and xt .. If the probe operator τxl
i x

m
t . can only

perform basic probe operations on M1 ., M2 ., or between M1 . and M2 ., then the
following conditions apply: First, when |M1| > |M2|., the computing platform
λ. will guide τxl

i x
m
t . to select two data fibers xl

i . from M1 . and xm
t . from M2 . and

perform basic probe operations; second, when |M1| = |M2|., the computing

9.2 Principle of Probe Machine 239

platform λ. will guide τxl
i x

m
t . to select the data aggregate containing the most

probe operators, and then select two data fibers, xl
i . and xm

t ., from this aggregate
to perform basic probe operations; third, when |M1| = |M2|. and both M1 . and
M2 . contain the same number of probe operators, the computing platform λ.

will randomly select two data fibers from either of M1 . and M2 . to perform the
basic probe operation. It should be noted that the data aggregate cannot grow
indefinitely. It is constrained by a specific threshold value, which is another
fundamental function of the computing platform λ..

Function 2: Threshold In the computing platform λ., the order of the data
aggregate after the probe operation must be exactly equal to the order of the
probe operation graph G(Xl,Y l)

.. The number of basic probe operations must exactly
match the number of edges in G(Xl,Y l)

.. Therefore, if the sum of the orders of the
two aggregates exceeds the order of G(Xl,Y l)

., even if there is probable data, the
computing platform λ. will prevent them from performing basic probe operations.

Function 3: Uniqueness In the computing platform λ., any data aggregate M .

with an order greater than 1 contains at most one instance of the same data type.
Furthermore, during the formation of M ., at most one basic probe operation is
performed between any pair of data elements.

9.2.2.6 Detector η .

The probe machine utilizes the probe operation graph to detect solutions (see
Sect. 9.2.2.4). For a given problem, after performing the probe operation, many
aggregates (also referred to as solutions to the problem) are generated on the
computing platform λ.. The necessary and sufficient condition for an aggregate to
be considered a true solution to the problem is that its topological structure is
isomorphic to the probe operation graph. Aggregates that are not isomorphic to
the probe operation graph are termed residual aggregates (or residuals). The task
of the detector η . is to identify the true solution on the computing platform λ. and
distinguish it from the residuals. Specifically, let Xl

. and Y l
. represent the required

subsets of data and probes for the problem, respectively, and let G(Xl,Y l)
. denote the

corresponding probe operation graph after the probe operation. The basic function
of the probe detector η . is as follows:

Let M . be any data aggregate in the computing platform λ.. If the order of M . does
not match the number of vertices in G(Xl,Y l)

., or the number of probe operators in
M . is not equal to the number of edges in G(Xl,Y l)

., then M . is considered a residual
aggregate and is separated into the residual recycler (as shown in Fig. 9.6). However,
if the order of M . is equal to the number of vertices in G(Xl,Y l)

., and the number of
probes in M . is equal to the number of edges in G(Xl,Y l)

., then each probe operator
uniquely corresponds to a pair of probable data fibers. In this case, M . is the true
solution to the problem and is separated into the true solution storage (as shown in
Fig. 9.6).

240 9 Probe Machine

9.2.2.7 Steps of Probe Operation

Let Xl
. and Y l

. represent the subsets of data and probes required for a given problem.
Based on the previous discussion, the specific steps of the probe operation can be
described as follows:

Step 1: Determine the probe operation graph G(Xl,Y l)
.. Based on this graph, we

can estimate the probability of generating G(Xl,Y l)
. during the probe operation.

Due to the computing platform’s high aggregation, threshold, and uniqueness
properties, this probability is expected to be significantly high.
Step 2: Determine the quantity of each type of data in the data sublibrary Xl

. and
the quantity of each type of probe in the sub-probe library Y l

.. The method is
as follows: based on the probability of G(Xl,Y l)

. being generated, and under the
assumption that a true solution exists in Θ . after the probe operation, determine
the quantity of each type of data and each type of probe.
Step 3: Using the data controller σ1 . and the probe controller σ2 ., extract the
determined quantities of each type of data in Xl

. and each type of probe in Y l
.

from the corresponding data and probe pools. These are then placed into the
computing platform λ..
Step 4: Perform the probe operation τ(Xl, Y l). on the computing platform λ.,
activating the detector η .. The true solution is separated into the true solution
storage, and the residual aggregates are placed into the residual recycler. The
topological structure of the true solution obtained in the above steps must be
isomorphic to G(Xl,Y l)

.. However, different true solutions may have different
weights (corresponding to different data fibers).

9.2.2.8 True Solution Storage and Residual Recycler

The true solution memory plays a crucial role in the computing platform. Its primary
function is to securely store the true solutions and enable accurate retrieval of
these solutions. During the probe operation process, the computing platform λ. may
generate aggregates that are not isomorphic to the probe operation graph G(Xl,Y l)

.,
referred to as residues. These residues are then directed to the residue recycler,
as depicted in Fig. 9.6. The main task of the residue recycler is to collect the
residues produced by the computing platform after the probe operation, perform
fine separation and processing, and subsequently reintegrate the data into the
corresponding database.

9.2.2.9 Structure Model of Probe Machine

Based on the previous discussion of the nine fundamental elements of the probe
machine, two overall structural models can be identified: one based on a connection
type and the other on a transmission type, as illustrated in Fig. 9.7.

9.3 Probe Machine Solves Hamilton Circle Problem 241

TRUE
SOLUTIONRESIDUE

DETECTER

D
at
a

C
on

tr
ol
le
r

Pr
o b

e
C
on

tr
ol
le
r

ab
itY

1

ix 2

ix

3

ix
ip

ix

TRUE
SOLUTIONRESIDUE

DETECTER

D
at
a

C
on

t r
o l
le
r

Pr
ob

e
C
on

tr
ol
le
r

1

ix

2

ix

3

ix

ip
ix

ab
itY

Fig. 9.7 Schematic diagram of the probe machine structure model [1]. (a) Connection-type probe
machine model. (b) Transfer-type probe machine model

To further elucidate the computational nature of the probe machine, the following
section will explore the solution method for the Hamiltonian problem. Subsequently,
an implementation method for the connection-type probe machine, based on DNA
nanotechnology, will be presented, along with its application to the graph coloring
problem.

9.3 Probe Machine Solves Hamilton Circle Problem

The Hamiltonian problem involves determining whether a given graph contains a
Hamiltonian cycle, i.e., a cycle that passes through each vertex of the graph exactly
once. This problem, first proposed by Hamilton [22] in 1856, is a well-known NP-
complete problem. Below, we present a connection-type probe machine model for
solving the Hamiltonian problem.

Let G. be a simple undirected graph with vertex set V (G). and edge set E(G).,
where V (G) = {v1, v2, . . . , vn}.. For any vertex vk ∈ V (G)., let E(vk). denote the
set of edges associated with vertex vk ., i.e., E(vk) = {vkvi | vkvi ∈ E(G), 1 ≤ i ≤
n}., and let E2(vk). represent the set of 2-length paths centered on vk . (as shown in
Fig. 9.8a), that is,

.E2(vk) = {vivkvj
l= xkij ; vi, vj ∈ N(vk); i l= j} (9.6)

where N(vk) = {x | xvk ∈ E(G)}.. Based on E2(vk)., we construct the connection-
type probe database for the Hamilton problem X as follows:

.X = ∪n
k=1E

2(vk) = ∪n
k=1{xkij |vi, vj ∈ N(vk); i l= j} (9.7)

242 9 Probe Machine

Fig. 9.8 Probe machine model for solving the Hamilton problem [1]

where each data xkij . has exactly two data fibers, denoted as xi
kij ., x

j
kij ., as shown in

Fig. 9.8b.
Based on the database X . constructed previously, we now build the probe library

Y .. It is generally assumed that the order of the graph G. is greater than or equal to 5.
We now analyze two cases for two vertices vi . and vt ..

Case 1: vi . and vt . are not adjacent. In this case, the two data xilj . and xtab . in the
database X . contain probes if and only if the following condition holds:

.|{i, l, j} ∩ {t, a, b}| = |{l, j} ∩ {a, b}| = 1 (9.8)

This condition implies that i /∈ {t, a, b}., t /∈ {l, j}., and the intersection {l, j} ∩
{a, b}. contains exactly one element.
Case 2: vi . is adjacent to vt .. In this case, a probe between data xilj . and xtab .

exists if and only if one of the following conditions holds:

. |{i, l, j} ∩ {t, a, b}| = |{j, l} ∩ {a, b}| = 1;

or

. t ∈ {l, j}, i ∈ {a, b} and |{l, j} ∩ {a, b}| = 0.

When solving the Hamiltonian problem using the probe machine model, it is
unnecessary to take the set of 2-length paths centered at each vertex vk . as a subset of
the database. Instead, we can select a vertex cover in the graph G. and then construct
the database for the 2-length paths with centers in the vertex cover. Naturally, the
minimum vertex cover set provides the optimal choice. Next, we outline the steps for
solving the Hamiltonian problem using the connection-type probe machine model.
We illustrate these steps with an example based on the 8-order graph shown in
Fig. 9.8c.

9.3 Probe Machine Solves Hamilton Circle Problem 243

Step 1. Build the Database
One can readily check that {v1, v2, v3, v4, v5}. is a minimum vertex cover of the
graph. So, the database is defined as

. X = E2(v1) ∪ E2(v2) ∪ E2(v3) ∪ E2(v4) ∪ E2(v5)

where E2(v1) = {x174, x178, x176, x148, x146, x186}., E2(v2) = {x268}., E2(v3) =
{x358}., E2(v4) = {x458, x451, x457, x481, x487, x417}., E2(v5) = {x534, x537, x547}..
There are 17 types of data in the database X and 34 types of data fibers. The data
fibers on each type of data are as follows:

I(x174) = {x7
174, x

4
174}.,I(x178) = {x7

178, x
8
178}.,I(x176) = {x7

176, x
6
176}., I(x148) =

{x4
148, x

8
148}.,

I(x146) = {x4
146, x

6
146}.,I(x186) = {x8

186, x
6
186}.,I(x268) = {x6

268, x
8
268}., I(x358) =

{x5
358, x

8
358}.,

I(x458) = {x5
458, x

8
458}.,I(x451) = {x5

451, x
1
451}.,I(x457) = {x5

457, x
7
457}., I(x481) =

{x1
481, x

8
481}.,

I(x487) = {x7
487, x

8
487}.,I(x417) = {x7

417, x
1
417}.,I(x534) = {x3

534, x
4
534}., I(x537) =

{x3
537, x

7
537}.,

I(x547) = {x4
547, x

7
547}..

Step 2. Build the Probe Library
According to the two situations of adjacency and non-adjacency, we construct a
sub-probe library based on 34 types of data fibers.

. Y12 = x8
178x

8
268, x

6
176x

6
268, x

8
148x

8
268, x

6
146x

6
268,

. Y13 = {x8
178x

8
358, x

8
148x

8
358, x

8
186x

8
358},

. Y14 = {x7
178x

7
457, x

8
178x

8
458, x

7
176x

7
457, x

7
176x

7
487, x

8
186x

8
458, x

8
186x

8
487, x

4
174x

1
451,

. x4
174x

1
481, x

4
148x

1
451, x

4
148x

1
417, x

4
146x

1
451, x

4
146x

1
481, x

4
146x

1
417},

. Y15 = {x7
174x

7
537, x

4
174x

4
534, x

7
178x

7
537, x

7
178x

7
547, x

7
176x

7
537, x

7
176x

7
547, x

4
148x

4
534,

. x4
148x

4
547, x

4
146x

4
534, x

4
146x

4
547},

. Y23 = {x8
268x

8
358}

. Y24 = {x8
268x

8
458, x

8
268x

8
481, x

8
268x

8
487}

.Y34 = {x5
358x

5
451, x

5
358x

5
457, x

8
358x

8
481, x

8
358x

8
487}

244 9 Probe Machine

. Y35 = {x5
358x

3
534, x

5
358x

3
537}

. Y45 = {x7
487x

7
537, x

7
417x

7
537, x

5
458x

4
534, x

5
458x

4
547, x

5
451x

4
534, x

5
451x

4
547, x

5
457x

4
543}

Step 3. Execute Probe Operation
Using the data controller σ1 ., a suitable amount of data x174, x178, x176, x148,.

x146, x186, x268, x358, x458, x451, x457, x481, x487, x417, x534, x537, x547 . are extracted
from the database X and placed into the computing platform λ.. Using the
probe controller σ2 ., a suitable amount of probes from the sub-probe libraries
Y12, Y13, Y14, Y15, Y23, Y24, Y34, Y45 . are extracted and placed into the computing
platform λ.. The probe operation τ . is then performed in λ., and under the functionality
of λ. and τ ., the solution to the problem is obtained. Finally, the detector η . checks
the solution.

Step 4. Check the Solution
The detector η . places 4-order or 5-order aggregates into the true solution memory
and directs the remaining aggregates to the residual recovery. As illustrated in
Fig. 9.8d and e, the two 8-order cycles represent the Hamiltonian cycles identified
during the process.

9.4 A Technology for Implementing a Connected Probe
Machine

As previously discussed, a computer is a machine developed based on a specific
computational model, using materials capable of executing this model. The probe
machine described in this chapter represents one such computational model. The
challenge now is to identify suitable materials for constructing a computer based on
the probe machine model. This is a complex problem. In this section, we present
a model for implementing a connection-type probe machine called the nano-DNA
probe machine model. In this model, the primary material for data is a composite
of nanoparticles and DNA molecules, while the primary material for probes is
DNA molecules. Although current nanotechnology and biotechnology, especially
detection technology, may struggle to solve large-scale practical problems [23],
advancements in detection technology could make the development of practical
nano-DNA probe computers possible.

Regarding the transmission probe machine model, a conjecture is proposed
in the literature [1], suggesting that the data in this model is a composite, with
the information carried by the data fibers akin to neurotransmitters (such as
acetylcholine). The probe operation in this model is hypothesized to be executed
via “action potentials,” similar to those in biological nervous systems. Research in
this area is still exploratory, and further discussions on the transmission-type probe
machine model and biological neural networks will be presented in the next section.

9.4 A Technology for Implementing a Connected Probe Machine 245

Here, we focus primarily on the nano-DNA probe machine model, which includes
the database, the probe library, and the detector.

Database In the nano-DNA probe machine model, the data design within the
database is as follows: nanoparticles are used as data cells, and DNA strands serve
as data fibers, as shown in Fig. 9.1c and d. This data is vividly referred to as “little
stars.” A data element xi . carrying pi . types of data fibers can be realized by the
following method: first, the nanoparticles are evenly divided into pi . connected
regions, and then a sufficient quantity of the same type of DNA strands (i.e., data
fibers) are connected in each region. Refer to [24] to the technique of connecting
DNA strands to nanoparticles.

Probe Library The design of the probes within the probe library of the nano-DNA
probe machine model is as follows: Suppose xa

i . and xb
t . represent two fibers on data

xi . and xt ., respectively. If these two fibers are capable of being probed, the probe is

denoted as xa
i xb

t ., which is a complementary strand of DNA formed by half of each
fiber from xa

i . and xb
t ., as shown in Fig. 9.2.

Detector Designing a detector for the nano-DNA probe machine model is chal-
lenging with current technology. Biochemical experiments typically use PCR
instruments or electron microscopes for detection. However, this method is still
immature. Once detection technology advances, the nano-DNA probe computer will
become a practical solution.

Next, we will explain the computation process of the nano-DNA probe machine
model in detail, using a specific graph vertex coloring example. This model’s core
principle of probe design is to ensure that adjacent vertices are assigned different
color probes.

For a k .-colorable graph, if a vertex v . consistently belongs to the same color class
under any k .-coloring (in terms of color isomorphism), then v . is referred to as the
coloring fixed vertex of the graph. Consider the 4-colorable maximal planar graph
shown in Fig. 9.9, where a maximal planar graph is a planar graph whose faces are
triangles. Its vertex set is {1, 2, . . . , 12}.. Let V l

. represent the set of coloring fixed
vertices of this graph. It is easy to verify that V ll = {1, 2, 3, 4, 5}.. The method for

Fig. 9.9 A 12-order 4-color
maximal planar graph and its
color invariant set [1]

246 9 Probe Machine

Table 9.1 Possible colorings
of each vertex in the graph
shown in Fig. 9.10, a total of
21

1 2 3 4 5 6 7 8 9 10 11 12

r1 . r5 . r6 . r11 .

y2 . y8 . y9 . y10 . y11 . y12 .

b3 . b6 . b7 . b8 . b9 . b12 .

g4 . g7 . g8 . g9 . g10 .

solving all colorings of this graph using the nano-DNA probe machine model is
provided below.

Based on the set V ll
., we construct a color table with the fewest colors possible,

as shown in Table 9.1. The numbers at the top, 1, 2, . . . , 12., represent the graph’s
vertices. Each vertex i . (1 ≤ i ≤ 12.) is located in a column that indicates the
allowed color for that vertex. The color marks r, y, b,. and g represent red, yellow,
blue, and green, respectively, with subscripts corresponding to the vertex identifier.
For example, r6 . indicates that vertex 6 is colored red. It is important to note that
because vertices 1, 2, 3, 4, and 5 are coloring fixed vertices, their colors are fixed
without losing generality as red, yellow, blue, green, and red, respectively.

(1) Database Construction Based on Table 9.1, the database consists of 12 data
elements, denoted as x1, x2, . . . , x12 .. For each data element xi . (i = 1, 2, . . . , 12.),
the data cell mark corresponds to the name of its corresponding vertex i ., and its
data fiber corresponds to all possible colorings of vertex i .. The data fiber types for
each data xi . correspond exactly to the i .th column in Table 9.1. Specifically, the
data fibers are as follows: I1 = {r1},I2 = {y2},I3 = {b3},I4 = {g4},I5 =
{r5},I6 = {r6, b6},I7 = {b7, g7},I8 = {y8, b8, g8},I9 = {y9, b9, g9},I10 =
{y10, g10},I11 = {r11, y11},I12 = {y12, b12}..
(2) Probe Library Construction Probes are designed based on each edge in the
graph. For convenience, we use xi . to represent the vertices i ∈ {1, 2, . . . , 12}. from
Fig. 9.9. As an example, consider the edge x4x12 .. Since vertex x12 . has two possible
colorings, the corresponding probe operator for edge x4x12 . has two possible probes:
g4y12 . and g4b12 .. In this way, probes can be designed for all the other edges. These
probes are organized into probe sub-libraries, as shown in Table 9.2. Each sub-
library corresponds to a specific edge, denoted as Yit ., where {i, t} ⊂ {1, 2, . . . , 12}.,
and xixt . represents an edge in the graph shown in Fig. 9.9. For instance, the part
corresponding to the edge x1x2 . is r1y2 ., indicating that the probe operator for this
edge contains only r1y2 .. Since the graph in Fig. 9.9 contains 30 edges, there are a
total of 30 sub-probe libraries comprising 73 probes.

(3) Probe Operation Steps

Step 1: Create 12 types of nanoparticles (2.5 nm in diameter) as the 12 types
of data cells. Encode the DNA sequences corresponding to 21 types of data

9.4 A Technology for Implementing a Connected Probe Machine 247

Table 9.2 The probe operator corresponding to each edge in the graph G, there are 30 sub-probe
libraries, 73 probes

x1x2 . x1x3 . x1x7 . x1x8 . x1x9 . x1x10 . x2x3 . x2x4 . x2x6 . x2x7 . x3x4 .

r1y2 . r1y8 . r1y9 . r1y10 . y2r6 .

r1b3 . r1b7 . r1b8 . r1b9 . y2b3 . y2b6 . y2b7 .

r1g7 . r1g8 . r1g9 . r1g10 . y2g4 . y2g7 . b3g4 .

x3x10 . x3x11 . x4x6 . x4x11 . x4x12 . x5x7 . x5x8 . x5x9 . x5x10 . x5x12 . x6x7 .

b3y10 . b3r11 . g4r11 . g4b12 . r5b7 . r5y8 . r5y9 . r5y10 . r5y12 . r6b7 .

b3g10 . b3y11 . g4r6 . g4y11 . g4y12 . r5b8 . r5b9 . r5b12 . r6g7 .

g4b6 . r5g7 . r5g8 . r5g9 . r5g10 . b6g7 .

x6x12 . x7x8 . x7x12 . x8x9 . x9x10 . x10x11 . x10x12 . x11x12 .

r6y12 . b7y8 . g7b8 . b7y12 . y8b9 . b8g9 . y9g10 . g9y10 . y10r11 . y10b12 . r11y12 .

r6b12 . b7g8 . g7y12 . y8g9 . g8y9 . b9y10 . g10r11 . g10y12 . r11b12 .

b6y12 . g7y8 . g7b12 . b8y9 . g8b9 . b9g10 . g10y11 . g10b12 . y11b12 .

fibers and then synthesize the corresponding DNA strands. Next, embed the DNA
strands (data fibers) into the corresponding nanoparticles (data cells).
Step 2: Based on Step 1, construct a probe library containing 73 types of probe
operators.
Step 3: Select an appropriate quantity of 12 data types from the database
and 73 types of probe operators from the probe library. Add these to the
computing platform. Various types of data aggregates are formed through specific
hybridization reactions between DNA molecules and under the action of the
computing platform. It should be noted that the current computing platform
cannot yet satisfy the three basic functions mentioned earlier. The design of
a computing platform capable of supporting these functions requires further
research. However, for the nano-DNA probe machine model, even without these
three basic functions, a sufficient quantity of data and probes allows for the
formation of all true solution data aggregates.
Step 4: Using detection technology, detect all 12-order data aggregates that are
isomorphic to the graph shown in Fig. 9.9. These data aggregates represent the
true solutions to the problem, i.e., the 4-coloring of the graph. It is important
to emphasize that current electron microscopes can only detect data aggregates
of smaller orders and have difficulty detecting larger-order data aggregates. This
limitation is a key reason why this model is not yet practical.

Theoretically, a single probe operation can identify all 14 true solutions of the
graph in Fig. 9.9 (i.e., all 4-colorings). Figure 9.10 illustrates these colorings.

248 9 Probe Machine

Fig. 9.10 All 14 types of 4-coloring of Fig. 9.9 [1]

9.5 Transmissive Probe Machine and Biological Neural
Network

The probe machine model is inherently present in nature, with a typical example
being the biological neural system, which can be considered a transmissive probe
machine model. In the biological neural system, various types of neurons exist.
Some neurons persist throughout the organism’s life, such as those in the cerebral
cortex, while certain brain regions contain stem cells capable of generating new
neurons to replace those that die or undergo apoptosis. Conversely, there are neurons
that, once lost due to death or apoptosis, are not replaced by new neurons. This
dynamic behavior demonstrates that the neural network is constantly evolving over
time. Information transmission between neurons occurs through synapses, which are
classified into two main types: electrical and chemical. Information transmission
in chemical synapses is unidirectional and relies on chemical substances (neuro-
transmitters) as the transmission medium. On the other hand, electrical synapses are
typically bidirectional, with information transmission occurring through electrical
currents (electrical signals). Regardless of the type, the transfer of information
between neurons depends on action potentials, which we can consider as the
fundamental probe operations in this model. Neurons themselves can be viewed as
data, while neurotransmitters serve as the information transmitted within the probe
machine.

From a mathematical model perspective, the probes of the probe machine can
be categorized into two types: connection-type probe operators and transmission-
type probe operators. The concept of the transmission operator arises from the
observation of information transmission between neurons in natural biological
systems facilitated by action potentials that travel through synapses. In this context,

9.6 Probe Machine Function Analysis 249

action potentials can be regarded as transmission probes. Although the transmission-
type probe machine mimics the information transmission in biological systems,
it possesses two key differences that distinguish it from biological systems. First,
in a biological system, the positions of any two neurons are fixed, whereas
in a transmission-type probe machine, the positions of data fibers are variable.
Information transmission only occurs when the machine locates two data fibers on
the computing platform. Second, in biological systems, the connections between
neurons are sparse—there are approximately 1012

. neurons in the human brain but
only 1015–1016

. synapses—while in the probe machine, the connections between
data are extremely dense, and any two data could potentially be connected.

9.6 Probe Machine Function Analysis

According to the definition of a Turing machine, the set consisting of all Turing
machines is countable, while the set of languages, denoted by Σ ., is uncountable.
This implies that the size of the set of languages is strictly greater than that of the set
of Turing machines. Consequently, there exist languages that cannot be recognized
by Turing machines, which indicates the existence of unsolvable problems, such as
the halting problem [25]. Moreover, there is a one-to-one correspondence between
the set of all languages and the set of real numbers. Similarly, a one-to-one
correspondence exists between the set of all Turing machines and the set of rational
numbers. From this comparison, it becomes evident that problems that Turing
machines cannot recognize are abundant.

9.6.1 Turing Machines Are a Special Case of Probe Machines

In each operation of a Turing machine, the read-write head moves one cell to the
left or right, reads the symbol in the current cell, deletes the symbol, or writes a new
symbol into the cell. The execution of this process is governed by the state transition
function δ(Q, Γ)., where Q is the set of states and Γ . is the set of available symbols
on the storage tape. When defined, δ(Q, Γ). is represented as a triplet (p, Y,D).,
where p ∈ Q. is the next state, Y ∈ Γ . is the symbol written on the cell pointed to by
the current read-write head, and D indicates the direction in which the read-write
head moves, either left or right. The following argument demonstrates that the probe
machine can simulate the state transition function δ(Q, Γ). of a Turing machine,
thereby proving that a Turing machine is a special case of a probe machine.

In the probe machine, the data consists of two components: data cells and
data fibers. Each data cell is an information source with multiple data fibers, as
illustrated in Fig. 9.3a. For simplicity, we consider the case where each data cell
contains only two types of data fibers, as shown in Fig. 9.11a. In this case, we
select a representative for each type of data fiber, as depicted in Fig. 9.11b. In this

250 9 Probe Machine

Fig. 9.11 Illustrative
example of a probe machine
simulating a Turing machine
[1]

example, the data cell x1 . contains information X, and its two types of data fibers
are labeled xL

1 . and xR
1 .. Similarly, the data cell x2 . has two types of data fibers, xL

2 .

and xR
2 .. The probe operator between the data fibers xR

1 . and xL
2 . is denoted as xR

1 xL
2 ..

Corresponding to the state transition function δ(Q, Γ). of a Turing machine, we
assume, without loss of generality, that the read-write head of the Turing machine
is instructed to move left. At this point, the data fibers xR

1 . and xL
2 . are connected

by the probe operator xR
1 xL

2 ., as shown in Fig. 9.11c. If xR
1 . carries information, this

information will be transmitted to the data cell of x2 ., as illustrated in Fig. 9.11d.

9.6.2 Can Turing Machines Simulate Probe Machines?

The previous section demonstrated that probe machines can simulate Turing
machines. However, the question arises: Can Turing machines simulate probe
machines in return? To address this, we begin by revisiting the definition of
probe machines and examining their fundamental functions. Let Xl ⊆ X . and
Y l ⊆ τ(Xl)., where the result of applying the probe operation τ(Xl, Y l). to the pair
(Xl, Y l). is denoted as Θ .. The set Θ . may contain a single true solution or multiple
true solutions, which are topologically related through isomorphism to the graph
G(Xl,Y l)

., but the weights assigned to the corresponding vertices may differ. Here,
the weight of a vertex is defined as the data fiber associated with that vertex. During
a probe operation, the number of basic probe operations corresponds exactly to
the sum of the number of edges in the graphs representing all the solutions. This
parallelism in the underlying computation of the probe machine is what allows
it to solve many NP-complete problems with minimal probe operations, such as
the Hamiltonian problem, graph coloring, SAT problem, TSP, maximum clique,
minimum independent set, and vertex cover problems, among others. In 1971, Cook
et al. [26] demonstrated that all NP-complete problems, in the context of a Turing

9.7 Conclusion 251

machine, are polynomially equivalent. This implies that, in the context of a probe
machine, these problems are no longer NP-complete. Each operation of a Turing
machine involves moving the read/write head one cell to the left or right, erasing
the current symbol, and writing a new symbol. From a topological perspective, the
execution of a Turing machine corresponds to a path of length 1, which relates
to only a single edge of a given graph (solution). Thus, exploring how a Turing
machine can simulate a probe machine is a task of great significance.

9.6.3 Advantages of the Probe Machine

Based on the previous discussions, the probe machine offers several notable
advantages. One of the primary strengths of the probe machine is its ability
to exponentially increase its information processing capability as the size of
the database grows. Specifically, the information processing capacity of a probe
machine during a single probe operation is 2q

., where q represents the total number
of edges across all graphs isomorphic to G(Xl,Y l)

.. This implies that for a data set
of size n = 50., and assuming each data element can be probed, the processing
capability of the probe machine reaches 225×49 = 21225

.. Such a vast computational
capacity is sufficient to break public key cryptosystems potentially.

9.7 Conclusion

The Turing machine processes adjacent data sequentially, and its data placement
mode is linear, which inherently restricts it to a serial computing model. In contrast,
the data placement mode of the probe machine is spatially unrestricted, allowing any
two data elements to be adjacent. Any data pair can directly process information,
providing the probe machine with inherent parallelism. As a result, the probe
machine typically requires only one or a few probe operations to solve problems.

The probe machine consists of nine components, the most crucial being the
database and the probe library. The basic probe operations are categorized into
connection-type and transmission-type, depending on the kind of fiber attached to
the data in the database. A connection-type probe operation processes information
between two data fibers without considering direction, while a transmission-type
probe operation is direction-dependent. We hypothesize that these are the only
two basic probe operations. For example, in solving the Hamiltonian problem and
the graph vertex coloring problem, the probe operation is of the connection type.
Meanwhile, information processing between biological neurons falls under the
transmission-type probe operation. This raises the question: Are there other basic
probe operations beyond these two types? Is there a hybrid probe machine that
incorporates both connection and transmission probes? These intriguing questions
warrant further thought and exploration.

252 9 Probe Machine

As a mathematical model, the probe machine theoretically offers significant
advantages over the Turing machine in solving many complex problems. Conse-
quently, computers based on probe machines could play a key role in developing
human society and even advancing civilization. A practical concern, however, is
the choice of material for building computers based on probe machines. While a
nano-DNA probe machine model has been proposed, it is still far from practical,
given the current limitations of detection technology. In contrast, the transmission-
type probe machine seems more promising for realization [19, 20]. We believe that
the transmission-type probe machine has the potential to surpass human cognitive
capabilities in certain areas.

References

1. Xu, J.: Probe machine. IEEE Transactions on Neural Networks and Learning Systems 27(7),
1405–1416 (2016)

2. Turing, A.M.: On computable numbers, with an application to the Entscheidungsproblem. J.
Math. 58(345–363), 5 (1936)

3. Turing, A.M.: Computability and λ.-definability. The Journal of Symbolic Logic 2(4), 153–163
(1937)

4. Moore, G.E.: Progress in digital integrated electronics. In: International Electron Devices
Meeting, Washington, D.C., IEEE, vol. 21, pp. 11–13 (1975)

5. Feitelson, D.G.: Optical Computing: A Survey for Computer Scientists. MIT Press, Cambridge,
MA, USA (1988)

6. McAulay, A.D.: Optical Computer Architectures: The Application of Optical Concepts to Next
Generation Computers. John Wiley & Sons, Inc., USA (1991)

7. Witlicki, E.H., Johnsen, C., Hansen, S.W., et al.: Molecular logic gates using surface-enhanced
Raman-scattered light. Journal of the American Chemical Society 133(19), 7288–7291 (2011)

8. DiVincenzo, D.P.: Quantum computation. Science 270(5234), 255–261 (1995)
9. Li, J.S., Li, Z.B., Yao, D.X.: Quantum computation with two-dimensional graphene quantum

dots. Chinese Physics B 21(1), 017302 (2012)
10. Li, H.O., Yao, B., Tu, T., et al.: Quantum computation on gate-defined semiconductor quantum

dots. Chinese Science Bulletin 57, 1919–1924 (2012)
11. Adleman, L.M.: Molecular computation of solutions to combinatorial problems. Science

266(5187), 1021–1024 (1994)
12. Roweis, S.T., Winfree, E., Burgoyne, R., et al.: A sticker based model for DNA computation.

In: DNA Based Computers, Proceedings of a DIMACS Workshop, Princeton, New Jersey,
USA, pp. 1–29 (1996)

13. Winfree, E., Liu, F., Wenzler, L.A., et al.: Design and self-assembly of two-dimensional DNA
crystals. Nature 394(6693), 539–544 (1998)

14. Mao, C., LaBean, T.H., Reif, J.H., et al.: Logical computation using algorithmic self-assembly
of DNA triple-crossover molecules. Nature 407(6803), 493–496 (2000)

15. Douglas, S.M., Marblestone, A.H., Teerapittayanon, S., et al.: Rapid prototyping of 3D DNA-
origami shapes with caDNAno. Nucleic Acids Research 37(15), 5001–5006 (2009)

16. Xu, J., Qiang, X., Yang, Y., et al.: An unenumerative DNA computing model for vertex coloring
problem. IEEE Transactions on Nanobioscience 10(2), 94–98 (2011)

References 253

17. Xu, J., Qiang, X., Zhang, K., et al.: A DNA computing model for the graph vertex coloring
problem based on a probe graph. Engineering 4(1), 61–77 (2018)

18. Hu, M., Li, H., Chen, Y., et al.: Memristor crossbar-based neuromorphic computing system: A
case study. IEEE Transactions on Neural Networks and Learning Systems 25(10), 1864–1878
(2014)

19. Duan, S., Hu, X., Dong, Z., et al.: Memristor-based cellular nonlinear/neural network: design,
analysis, and applications. IEEE Transactions on Neural Networks and Learning Systems
26(6), 1202–1213 (2014)

20. Gong, M., Liu, J., Li, H., et al.: A multiobjective sparse feature learning model for deep neural
networks. IEEE Transactions on Neural Networks and Learning Systems 26(12), 3263–3277
(2015)

21. Xia, Y., Wang, J.: A bi-projection neural network for solving constrained quadratic optimiza-
tion problems. IEEE Transactions on Neural Networks and Learning Systems 27(2), 214–224
(2015)

22. Hamilton, W.R.: Letter to John Graves on the Icosian, 17 Oct., 1856. The Mathematical Papers
of Sir William Rowan Hamilton 3, 612–625 (1931)

23. Xu, J., Li, F.: Principles, progress, and challenges of DNA computers (V): DNA molecule
immobilization technology. Chinese Journal of Computers 32(12), 2283–2299 (2009)

24. Cohen, R., Schmitt, B.M., Atlas, D.: Reconstitution of depolarization and Ca2+-evoked secre-
tion in Xenopus oocytes monitored by membrane capacitance. Exocytosis and Endocytosis,
pp. 269–282 (2008)

25. Sipser, M.: Introduction to the Theory of Computation. ACM Sigact News 27(1), 27–29 (1996)
26. Cook, S.A.: The complexity of theorem-proving procedures. In: Proceedings of the Third

Annual ACM Symposium on Theory of Computing, pp. 151–158. ACM, New York, NY, USA
(1971)

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Chapter 10
DNA Algorithmic Self-Assembly

Since Seeman proposed using DNA as a nanomaterial, DNA Tile and DNA origami
technologies have been successively proposed, and DNA has realized the pro-
grammable assembly from two-dimensional patterns to three-dimensional spatial
structures. The nanostructures constructed by DNA have stable properties, regular
geometric appearance, and spatial addressability, and are widely used in many fields.
DNA algorithmic self-assembly can be realized by controlling the self-assembly
process in ways such as sequence and connection rules. With the programmability
of DNA sequences, the design of DNA nanostructures to realize DNA algorithmic
self-assembly has made good progress. This chapter mainly includes DNA Tile
computation, Turing equivalent Tile computation, programmable Tile structure,
single-strand Tile (SST) computation, universal DNA Tile computation, DNA
origami computation, etc.

10.1 DNA Tile Computation

DNA Tile is an important concept in the field of DNA nanotechnology. It is a self-
assembled nanostructure formed by precisely designed nucleic acid sequences. Each
DNA Tile is composed of a series of short DNA strands, which are combined with
each other through the principle of base pairing to form a stable two-dimensional
or three-dimensional structure. The design of DNA Tile is usually based on the
“molecular template” principle, where one DNA molecule coding region (called
the template) determines the arrangement and combination of another molecule
coding region or a set of molecule coding regions. The specific DNA sequence
coding design is based on the principle of specific base complementary pairing, and
the single-stranded sticky ends exposed by the DNA Tile structure guide the Tile
to automatically assemble into a predetermined geometric shape. These Tiles can
further assemble into larger structures, such as lattices or other complex nanoscale
patterns and devices.

© The Author(s) 2025
J. Xu, Biological Computing, https://doi.org/10.1007/978-981-96-3870-3_10

255

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-96-3870-3protect T1	extunderscore 10&domain=pdf
https://doi.org/10.1007/978-981-96-3870-3_10
https://doi.org/10.1007/978-981-96-3870-3_10
https://doi.org/10.1007/978-981-96-3870-3_10
https://doi.org/10.1007/978-981-96-3870-3_10
https://doi.org/10.1007/978-981-96-3870-3_10
https://doi.org/10.1007/978-981-96-3870-3_10
https://doi.org/10.1007/978-981-96-3870-3_10
https://doi.org/10.1007/978-981-96-3870-3_10
https://doi.org/10.1007/978-981-96-3870-3_10
https://doi.org/10.1007/978-981-96-3870-3_10
https://doi.org/10.1007/978-981-96-3870-3_10

256 10 DNA Algorithmic Self-Assembly

The tiling of DNA Tiles is to use the basic DNA molecular structure as a tile or
ceramic tile (Tile) to cover the ground like laying tiles, or to piece together a specific
shape like building blocks. This embodies the bottom-up self-organization idea, that
is, to use DNA Tile as the basic unit, and gradually expand and piece together into
a specific pattern according to certain rules. By encoding the given DNA molecule
sticky end splicing logic and restriction conditions to the DAN sequence, DNA can
Tile forms regular patterns according to the set method, this programmable self-
assembly technology reflects the computability of DNA Tile. DNA Tile is one or
several basic structures, this programmable bottom-up self-assembly method is also
the most important idea of DNA Tile self-assembly.

The programmable self-assembly of DNA Tile provides the physical basis
for the implementation of DNA Tile computation. DNA Tile assembly is the
process of building physical structures, and computation is the logic and algorithm
operations implemented on these structures. Assembly is the basis of computation,
and computation gives assembly higher functions and purpose.

10.1.1 DNA Tile Types

The design of DNA Tile was inspired by the DNA Holliday junction structure in
nature. Researchers designed a very simple but effective structure called the four-
arm junction. As shown in Fig. 10.1, it can connect in four directions: up, down, left,
and right. Each chain does not fully combine with another chain, and the exposed
ends can cascade. In this way, the four-arm structures can connect with each other to
form a large network structure. On this basis, improvements can be made to the four-
arm junction to form a more stable structure, and the new structure can be applied
to the design of finite arrays.

Fig. 10.1 (left) Four-arm junction Tile. (right) Four-arm junction connects in four directions: up,
down, left, and right

10.1 DNA Tile Computation 257

Fig. 10.2 Stable structures
DAE/DAO in DX

Although the four-arm junction Tile appears to be 4-fold symmetric, in fact,
with the rotation of the structure, the structure is only 2-fold symmetric. Moreover,
due to the relaxation of the structure, the four-arm junction Tile is not very stable.
Based on this, Seeman and others developed the DX Tile [1], which contains two
crosses, is made up of two strands of DNA double helix side by side, and each
structure contains 4–5 single strands. Fu and others designed several different DX
Tile structures [2]. However, after experimental verification, only two are relatively
stable, namely DAO and DAE, as shown in Fig. 10.2.

The naming method of these two structures represents their structural charac-
teristics. D represents that it is a double cross (Double Helix), meaning that these
two structures are both double helix structures; A represents that the cross point
is antiparallel; O represents that the number of helical pitches spanned by the two
cross points of the adjacent double helix is odd (Odd), and E is even (Even). In fact,
when designing the DNA Tile structure, the relationship between the pitches should
be noted. It is required that each chain does not produce torque when spanning the
pitch, so the best effect is for the single chain to span at the integer of the pitch. In
fact, because one pitch is about 10.5–10.6 bases, there will be a certain error between
the design scheme based on DNA Tile self-assembly and the actual situation. That
is, each pitch accumulates about 5 degrees. When designing the DNA Tile structure,
the deviation of 5 degrees can almost be ignored. And in the self-assembly process,
the twist can be cancelled by the connection form of positive and negative.

The success of DX Tile laid a solid foundation for its large-scale assembly. The
literature [3] changes the internal and lateral spacing of the Tile, allowing the Tile to
misalign in the same direction. Thus, the figure is changed from one-dimensional to
two-dimensional complex structure (Fig. 10.3). This improvement can also realize
the self-assembly of complex multi-Tile systems, as well as stripe modification and
streptavidin protein chimera complex labeling. It laid a solid foundation for later
self-assembly based on DNA origami.

The DX structure is relatively small, so the structure is stable, and it has high
robustness when connected into a large-scale structure. However, because DX and
TX only extend sticky ends in two directions for connection, their connection
directions are restricted and cannot be expanded in other directions. In 2003, Yan

258 10 DNA Algorithmic Self-Assembly

Fig. 10.3 3D DNA tile

Hao and others synthesized the advantages of the above DX/TX structure and
invented the 4 × 4. Tile, also known as the cross Tile. It has 4 arms that can connect
in four directions: up, down, left, and right. Each arm has a dedicated chain for
stabilizing the structure, and each arm forms a cross with the common center chain
in the center. This structure can form a stable cross, which can make the entire
structure very stably connected in four directions to form a stable square network
structure [4]. This structure can not only connect in four vertical directions, but also
form connections in any other plane direction by adjusting the angle between the
arms, realizing some special applications. Such as molecular printing, finite grid,
nano-marking, etc.

Seeman et al. extended the above Tile, they designed each arm in the cross Tile
to be completely symmetrical arms, and obtained 3-arm/8-arm/12-arm structures
[5, 6]. They call it the N Tile series, where N represents the number of Tiles. N Tile is
a general-purpose Tile system, theoretically each Tile only needs three DNA single
strands to form. Tile system can assemble nano-scale regular grids and symmetrical
three-dimensional structures, these structures are precise and regular, reflecting the
powerful self-assembly ability of N Tile.

In fact, the Tile system can continue to be subdivided downwards, and Sub-
Tile can be formed through the assembly between arms. In 2014, the literature [7]
assembled perfect nanotubes and nanobelts through the Sub-Tile strategy, reflecting
the bottom-up programming ability of the Tile self-assembly system.

The design of the molecular Tile system requires not only mathematical theory
proof but also experimental verification. At present, there are dozens of small
molecular Tiles designed theoretically, but the commonly used ones in actual
experiments are the experimentally verified mature schemes mentioned above.

10.1 DNA Tile Computation 259

10.1.2 DNA Tile Calculation Example

Using the above Tile system, researchers can form one-dimensional, two-
dimensional, or three-dimensional nanostructures. Through one or several Tiles
freely combining in solution, periodic network structures are formed. These Tiles
are not subject to connection restrictions, and they form infinite patterns through
periodic connections with themselves or other Tiles.

In 2005, literature [8] used the improved cross Tile to form a 3 × 3. grid and
extended probes on the grid to achieve specific hybridization. At the same time, the
LaBean group designed a 4× 4. grid, specifically biotin and streptavidin labeling on
the grid, achieving 5 nm level DNA pattern labeling [9].

Depending on the coding of each Tile, the final network structure can be solid
or hollow. It can even grow and arrange according to specific rules, achieving stop
or judgment and other rule-based connections. For example, by adding different
stop growth rules, 2 × 2., 3 × 3., 4 × 4. different sizes of network structures can be
generated. If the stop growth rule is defined in the center of the network, different
sizes of frames can be generated.

Labean and others used the improved cross Tile to design a fully addressable
and precisely programmable array. Through step-by-step hierarchical assembly
technology, a fully addressable finite-sized array [9] was manufactured. Each arm
of this DNA Tile contains a DNA Holliday structure, and each cross structure can
ensure the stability of the arm. Observed by atomic force microscopy, the size of the
nanostructure is completely consistent with the design, and the length of a single
Tile is about 10nm. The DNA nanoarray they designed can be used as a development
template for organizing heterogeneous materials.

Through the assembly of cross-shaped Tiles, Labean and others have verified an
easy-to-develop universal assembly system. Through

Nanotechnology and molecular chemistry control the structure at the nanoscale
and use self-assembly to build fully addressable, finite-sized arrays, demonstrating a
variety of self-assembly program modes. In addition, they also decorated the assem-
bly structure with proteins shaped like the letters “D”, “N”, and “A”, demonstrating
the fully addressable nature of the structure.

The displacement connection of DX Tile to realize the cumulative XOR logic
gate is a classic example. Rothemund and others achieved a 9-bit addition, and
the structure displayed under the atomic force microscope is a complete Sierpinski
triangle pattern [10]. This scheme is the first to use small molecule DNA Tiles
for mathematical calculation design and experiments. The experimenters not only
proved the computational efficiency of the system from mathematical principles but
also discussed the possible causes of errors in the experiment. As shown in Fig. 10.4.

Rothemund and others used the tile assembly model to realize the classic Sier-
pinski triangle structure. They used the two-dimensional self-assembly technology
of DNA tiles, based on the update rules of the automaton to calculate binary.
They formed a Sierpinski triangle, a Sierpinski triangle is a figure formed by
the accumulation of triangles, and as the structure grows, the XOR logic makes

260 10 DNA Algorithmic Self-Assembly

Fig. 10.4 Tile implement the 5 × 5.matrix

the structure form a fractal pattern. To realize the Sierpinski triangle, the abstract
triangle structure is concretized as a DNA tile of a double-cross pattern. As an
input for computation, long single-strand DNA molecules are used to grow tiles into
cumulative structures. The assembly error rate of their formed Sierpinski triangle is
between 1% and 10%. Although not perfect, the generation of the Sierpinski triangle
structure demonstrates all the necessary mechanisms for any DNA molecular
automaton to implement computation, that is, a simple paste model. This shows
that the DNA paste model can be treated as a Turing universal biomolecular system,
capable of partially computing or constructing task algorithms.

They use the protrusions and depressions of the tile structure to distinguish
between 0 and 1. According to the values of the four corners of the tile structure,
only four different computing modules are needed to assemble the Sierpinski
triangle.

The splicing of DNA blocks actually completes the calculation of the cumulative
XOR logic gate. The self-assembly of the DNA Sierpinski triangle demonstrates all
four features required for Turing equivalent computation: the formation of structural
crystals, the formation of extended crystals, programmable interaction between
DNA tiles, and the templating of input and output information.

In the experiment, Rothemund and others used two different DNA tile structures,
DAE and DAO. In the experimental design of DAE, the top center includes four
DAE-E molecules, namely VE-00, UE-11, RE-01, and SE-10. Each symbol ‘0’ or
‘1’ is represented by making the complementary shape large or small. The pink
legend shows the mapping from shape to paste sequence. The molecular diagram
of VE-00 shows how each DAE-E tile is composed of five DNA strands. Six DAO-
E computing units are used in the design of DAO: S-00, R-00, S-11, R-11, S-01,
and R-01. The symmetry of DAO-E molecules allows each molecule to be used for
a computing module, and the two modules S-00 and R-00 are used to restrict the
input structure.

10.2 Turing Equivalent Tile Calculation 261

The result of the atomic force microscope found that the connection efficiency
of DAE is not as high as that of DAO, but in terms of structural mismatch,
DAE has more reliable computing power. In fact, the study of algorithmic self-
assembly can be further understood as simple biological self-assembly. Algorithmic
crystals composed of simple DNA tiles serve as templates for simplicity and
multifunctionality. However, biological self-assembly is more complex and pre-
cise, including conformational changes, dissipation mechanisms, ATP hydrolysis,
genetic interactions, etc.

The interaction between DNA tiles is determined by the selective association
of sticky end sequences. Well-designed initial input layer tiles grow in a controlled
manner triggered by input information. This tiling method can be used to implement
other cellular automaton rules. DNA tile self-assembly is programmable and Turing
equivalent. In addition, for manufacturing purposes, the direction and degree of
growth can be controlled by self-assembled calculations, allowing efficient creation
of arbitrary shapes. The main obstacle currently limiting self-assembly calcula-
tions is errors during the growth process, which is limited by current molecular
biotechnology. There are several types of errors in the experiment, including lattice
dislocations, structural errors of mismatched tile connections, and errors during the
growth process. Developing an accurate quantitative model is very valuable for
algorithmic self-assembly.

10.2 Turing Equivalent Tile Calculation

The mathematical definition of DNA Tile calculation can be defined from the
perspective of computer algorithms and mathematical logic. DNA Tile calcula-
tion involves transforming computable problems into a series of programmable
molecular self-assembly processes. The Tile calculation system can theoretically
be designed as a Turing-complete system, capable of simulating any computable
algorithm. Specifically, by properly designing DNA Tiles and their interaction rules,
a computable system that performs any Turing equivalent complex algorithm can be
constructed.

DNA Tile calculations are often described through programmable molecular self-
assembly models, which define how DNA Tiles self-assemble into larger structures
based on their edge complementarity. Each type of Tile can be regarded as a “state”,
and their programmable connections simulate the state transitions of the Turing
calculation system.

10.2.1 Mathematical Model of DNA Tile Calculation

The mathematical model of DNA Tile calculation originates from the floor tiling
problem in the 1960s. In 1961, the Chinese-American mathematician Wang Hao

262 10 DNA Algorithmic Self-Assembly

proposed a mathematical problem based on floor tile assembly—Wang Tile [11] in
the Bell System Technical Journal, that is, whether there is a set of tiles that can
non-periodically tile the entire plane.

The set of tiles stipulated by Wang Tile is a polygonal figure with a certain
rule shape and different colors. The basic rule is that edges of the same color
can be assembled and connected together, and they must be shape-matched, that
is, the corresponding edges can be nested. According to this rule, a set of Tiles
are assembled one by one to form a plane or a network structure. This calculation
process is Tile self-assembly, and Tile calculation is also Turing equivalent.

Intuitively, each DNA Tile has a connection direction, on its east, south, west,
and north sides. Connections occur when the matching strength on adjacent edges is
greater than the stability of the current single block. This connection method belongs
to entropy-driven edge connection and does not require coding of sticky ends. The
connection method based on base complementary pairing involves algorithm design.
Winfree gave a complete definition of the self-assembly connection model [12].
And a series of subsequent experiments validated this model [13, 14]. DNA Tiles
can contact a large number of other Tiles under the drive of molecular thermal
motion, and the sticky ends of Tile DNA chains connect under the constraint of
the base complementary pairing rule. It should be noted that the stability of this
connection is determined by the entropy stability of the connecting molecules and
the temperature in the external environment. When the stability of the molecular
connection is greater than the environmental temperature, the connection is stable.
The definition and operation of the DNA Tile system are as follows.

The four connection domains of DNA Tile can be defined as a finite set Σ ., and
the connection rules of the connection domain are defined as μ.. When a Tile is not
connected by other Tiles, the Tile can be defined as “empty”. T is a set of specific
Tile sets, and τ . is the energy required for connection (generally molecular thermal
drive).

In the connection set Σ ., the empty set is also included, that is null ∈ Σ .. For
a Tile, the operation of four-direction connection is denoted as δ ., and the Tile is
denoted as (δ N δ W δ E δ S0 ∈ Σ .. The direction function set here is {N,W,E, S}.
to implement position mapping. For a certain position (x, y) ∈ z., the direction set
D can be represented as:

. N (x, y) = (x, y + 1) ; W (x, y) = (x − 1, y) ;
E (x, y) = (x + 1, y) ; S (x, y) = (x, y − 1) (10.1)

The definition of two adjacent Tiles (x, y). and (m, n). is denoted as:

. (x, y) , (m, n) ∈ Z; if d ∈ D, d (x, y) = (m, n) (10.2)

The connection strength g is represented as:

. E × E - R (10.3)

10.2 Turing Equivalent Tile Calculation 263

The connection strength g is variable, where any connection operation ∀δ ∈ E .. For
an empty edge, its connection strength is 0, g (null, δ) = 0.. Suppose:

. g
(
δ, δ') = 0 ⇔ δ '= δ' (10.4)

Equation 10.4 explains the definition of two adjacent Tiles
(
δ, δ')

. that cannot be
connected from the connection strength. Therefore, defining g = 1. means ∀δ '=
null ., if g (δ, δ) = 1. and ∀δ '= δ'

. then g
(
δ, δ') = 0..

If the set T is a group of Tiles containing empty edges. Then the operation
formula for the position of T can be defined as A: z × z - T .. For this position
(x, y) ∈ A., if A (x, y) '= empty .. The connection of A is finite, only when there
are only finite connected positions, that is (x, y) ∈ A..

Finally, a Tile system S is a triplet < T, g, τ >.. Here T is a Tile set containing
the empty set, g is the connection strength, τ ∈ N . represents the thermal energy
required for connection.

If there is a Tile system S, S =< T, g, τ >.. S some Tiles A satisfy T ' ⊆ E4
.,

under this circumstance, Tile (t ∈ T .), t can be connected to A at position (x, y).,
and the condition for generating a new connection graph A'

. after connection is:

. (x, y) /∈ A, and

Σd∈D g (bdd (t) , bdd−1 (A (d (x, y)))) > τ, and

∀ (u, v) ∈ Z2, (u, v) '= (x, y) ⇒ A' (u, v) = A (u, v) , and (10.5)

A' (x, y) = t

From Eq. 10.5, it can be seen that Tile t must meet several conditions to be able to
connect to the graphic block. (1) t can only be connected at an empty position, that
is, the position already occupied by the original graphic block cannot be connected
again. (2) The connection energy of the connected edge τ . must be greater than
or equal to the energy required for base complementary pairing. (3) The stability
entropy after connection needs to be greater than or equal to the temperature of the
environment, otherwise the connection is unstable. For example, for any connection
operation δ ., if g (δ, δ) = 1., and τ = 2., then the energy possessed by this Tile can
be connected on two adjacent edges among {N,W,E, S}..

For a given Tile system S =< T, g, τ >., and the set of Tile systems r .. The
seed graph S0 . (S0 . can be either the starting Tile or the starting graph): Z2 - r ..
If all the above conditions are met, then T is connected to S0 .. Define W0 ⊆ Z2

.,
W0 . is the set that can be connected to the upper direction. On this basis, another
definition w ⊆ W0 ., Uw . is connected at w to the set of S0 .. Let ~S1 . be all possible
connection graphs, each possible connection edge probability is p, with p ∈ S0 .,
S1 (p) = S0 (p). represents that the connection probability at these two places is the
same.

For all S1 ∈ ~S1 ., it can be explained that the Tile system S is connected to S0 . in
one step reaction, and the connection result is S1 .. If there is a series of connection

264 10 DNA Algorithmic Self-Assembly

results {A0, A1, . . . , An}. are all connected graphs, i ∈ {1, 2, 3, . . . , n}., and the Tile
system S is connected from Ai−1 . to generate Ai . in one step. In this way, it can be
defined that S is connected from the seed graph A0 . to produce An . in n-step reaction.
If S can only generate An . in n steps, then An . is called the only final result. If from
S1 . to Sn ., the final result is A0 ., and n is the minimum steps required to generate A0 ..
Then n is called the time required for assembly.

DNA Tile computation starts from a seed point S, and other Tiles gradually
connect to S. If no other Tiles are connected to S, the computation ends. Under
certain conditions, it is possible that multiple Tiles connect to a specific location, or
a Tile can be connected by multiple other Tiles. The scheme that can be connected
by multiple other Tiles can also form multiple different final connection results.
In this case, we say that multiple connection results can be formed starting from
S. Since a large number of Tiles are connecting at the same time, this process of
large parallel computation will eventually produce the result with the minimum
connection steps. This is also the reason why the connection result will eventually
tend to thermodynamic stability.

10.2.2 Turing Equivalence of DNA Tile Computation

The computational power of DNA Tiles has been proven to be Turing equivalent
[15], theoretically it can be used to construct an automatic molecular solution system
for any computable function. Taking a one-dimensional cellular automaton as an
example, it can be assembled by two Tile systems. 1-D cellular automata are Turing
equivalent, and they have been proven to be able to perform Turing computation.

A 1-D cellular automaton is an infinitely long strip, and the state of the cells on
the strip can be transformed according to the state of its neighboring cells. The 1-D
tiling system represents a one-dimensional cellular automaton in a single row and
can calculate the state of the automaton in the previous row in time. Through the
transformation of each cell state, the 1-D cellular automaton can simulate a general
one-dimensional cellular automaton.

Here we introduce a structure that converts a Turing machine into a Tile
computing system. This system calculates the state description of the Turing
machine in real time at each transformation step to simulate the Turing machine,
and can well simulate the computing process of the 1-D Tile system.

A Turing machine is a simple computer. The exterior of the Turing machine
contains an infinitely long data tape, a tape head that can read data, and the tape head
can read a data cell on the data tape each time. The interior of the Turing machine
is a state-limited data structure and state controller. The state controller can change
the state of a data cell each time. The operation of the Turing machine follows some
simple transformation rules, these simple rules are reflected in the state changes of
the data cells (the data tape contains data cells, the state of the data cells). The tape
head can convert a data cell from one state to another and write a symbol code on
the data cell. After completing this transformation, the tape head can move to the

10.2 Turing Equivalent Tile Calculation 265

Fig. 10.5 Three-state Turing
machine

adjacent data cell, to the left or to the right. The significance of the Turing machine
is that it can complete all computing functions, and there is no more “powerful”
computer that can surpass it. Here, powerful does not mean faster or more efficient,
but refers to the computational theoretical structure.

Figure 10.5 shows the computing principle of a three-state Turing machine,
which includes three operations (start, add, stop), and three states (represented as
0,1,*). When the tape head is placed on the data tape, it can write 0 or 1 on the data
cell, or move left or right. “*” Indicates that the writing stops at this place, which is
a sign of the stable operation state of the data cell at this place.

The L* in the figure indicates moving to the leftmost data cell and stopping
moving to the left. Write 0 or 1 (Add) at this place. And continue to write 0 or
1 at other positions until it stops (Halt).

The DNA Tile computing system can simulate the computing process of the
Turing machine. As shown in Fig. 10.6, the Tile system simulates the computing
process of the Turing machine. This Tile system completes the calculation in the
clockwise direction of the five-step process. Each row of Tiles represents a state of
the Turing machine. The start of the yellow data is the bottom row of Tile tapes. It
should be noted that the connection of Tiles needs to be connected layer by layer,
and it cannot be broken in the middle, otherwise the final result cannot be obtained
or the result obtained is wrong.

The calculation in Fig. 10.6 starts from a row of seed Tile strips (from left to
right), and adds 1 to the value represented by the seed strip. Each step of the
calculation process is reflected through the assembly of the next layer of Tiles. As
shown in Fig. 10.6, starting from the upper left corner, in a clockwise direction, the
Tile strips of the 2nd, 3rd, 6th, and 10th layers undergo state changes. The calculated
value shown in the figure is 11 = 01011, and the final result is 12 = 01100. This Tile
system has completed the calculation definition of the formula f (a) = a + 1.. The
red square block represents the position of the tape head on the data tape of the
Turing machine. This position corresponds to the state of the Tile in the Tile system
schematic, represented in red.

266 10 DNA Algorithmic Self-Assembly

Fig. 10.6 DNA Tile system simulates the process of Turing calculation

Although this Tile system has only completed a simple addition, and used 10
layers of Tile strips, it reflects the process of Turing equivalence. In fact, the Tile
system is not only Turing equivalent, but there is also a corresponding Tile system
for each Turing system that can complete the corresponding operation. The number
of Tiles required to convert a Turing system to a Tile system is

.N = Ω(|e| • |Σ |) (10.6)

Here, e . represents the required finite control set, and Σ . represents the letter state
set. Other papers have also discussed the equivalence problem between the Tile
system and the Turing machine. For example, Brun and others also proved that
under a stable entropy, the Tile system is Turing equivalent [16].

With the improvement of the level of biomolecular biotechnology, people have a
deeper understanding of the characteristics of DNA, and the control of DNA chains
is more handy. The four bases of DNA can be freely swapped and encoded, and
researchers can use restriction endonucleases, exonucleases, polymerases, ligases,
etc. to operate on DNA, which can achieve more complex and rich calculations. And
because the nanometer length of the DNA molecule chain can set a Tile as a short
DNA chain or a double DNA chain, this helps to increase the order of magnitude
of the number of Tiles. At the same time, more advanced instruments also provide
great help to the calculation results.

Through the research of the above work, it can be concluded that the Tile system
is Turing equivalent. The advantage of the Turing computer lies in the supporting
electronic components, diodes, resistors, chips and other hardware to support its
work. And with the development of the Turing machine, a series of software can also
cooperate to write high-level languages, such as Java, C, C++, etc. The combination
of these hardware and software is conducive to the construction of very complex

10.3 Programmable Tile Structure 267

computing systems. Therefore, the research on the Tile system should not only stay
at the simple addition and subtraction multiplication method of Turing equivalence,
but should fully utilize the large-scale computing nature of the Tile system and the
molecular characteristics of DNA. Carry out systematic and comprehensive research
on the Tile computing model.

10.3 Programmable Tile Structure

Molecular computation can be realized by the self-assembly of the DNA Tile
algorithm. Complex calculation processes require stable molecular structures and
rich molecular types. Although the method of designing sticky ends with palindrome
sequences can successfully construct large-scale arrays at the millimeter level,
it also sacrifices the richness of molecules to a certain extent. The design of
asymmetric sticky ends can not only improve the ability of specific binding, but
also provide richer programming combinations. Shi Xiaolong and others from
Guangzhou University [7] proposed a Sub-Tile programmable hierarchical self-
assembly strategy using asymmetric sticky end design. Professor C. Montemagno,
Chairman of the Canadian Intelligent Nanosystems Research, listed Sub-Tile as one
of the 15 important milestones in DNA nanotechnology since its development in
1991.

Sub-Tile is composed of only three DNA single strands a, b, and c, containing
primary sticky ends and secondary sticky ends. single strands a, b, and c correspond
to areas a2 . and c6 ., b3 . and c5 ., b1 . and c4 . complement each other to form a Sub-Tile
structure. Primary sticky ends such as a1 ., a3 ., b4 ., c1 ., c2 ., c3 . are used to realize the
connection between Sub-Tiles to form a composite structure. For example, Sub-Tile
Si . and Sj . are connected by complementary pairing of ai3 . and cj2 ., and ci2 ., ci3 . of Si .

and bj4 ., aj3 . of Sj . are connected to the corresponding areas of adjacent Sub-Tiles
. For example, ci2 . and aj3 ., ci3 . and bj4 . are connected to form a two-arm structure,
and the connection of the six-arm structure. Secondary sticky ends such as ai1 . and
ci1 . can make the composite structure form more complex two-dimensional or three-
dimensional arrays.

The asymmetric sequence design method of sticky ends lays the foundation for
Sub-Tile to stably construct rich structures. On the one hand, programmable self-
assembly can be achieved by simply modifying the sticky end sequence to form
different structures. Experiments have proven that two-arm, three-arm, four-arm,
five-arm, and six-arm structures have all been successfully constructed. Structure
determines function, and the successful assembly of different types of structures
also means that Sub-Tile has the potential to implement different functions. On the
other hand, the asymmetric sequence design improves the sequence specificity and
reduces the possibility of mismatches during the assembly process.

The assembly process of Sub-Tile adopts a layered self-assembly strategy,
which reduces non-specific binding and chain interference of DNA strands during
the annealing process compared to one-pot assembly. After assembling the first-

268 10 DNA Algorithmic Self-Assembly

level Sub-Tile unit, the layered self-assembly strategy allows for more design
combinations when binding between Sub-Tiles, forming richer assembly patterns.

10.4 Single-Strand Tile Calculation

DNA Tile utilizes the accuracy of DNA base complementary pairing and the
stability of Holiday junctions to assemble various arm-like structures, but building
complex shapes that can be uniquely addressed based on DNA Tile is a major
challenge.

Traditional DNA Tiles are often assembled into compact structures using
multiple chains, leaving a few sticky ends for further connection. Starting from
first principles, the Yin Peng team at Harvard University proposed the concept of
SST (single strand Tile), which uses four coding regions of a single DNA strand
to achieve programmable self-assembly, and then assembles complex patterns with
a large number of coded SSTs to build a DNA canvas [17]. A DNA single strand
of 42 bases is divided into four binding domains, each consisting of 10-11 bases.
During the assembly process, all SSTs are folded into Tiles of the same shape and
size, 3 nm×7 nm.. The binding domains are divided into two groups, with domains 1
and 2 forming one group, and domains 3 and 4 forming another group. In a manner
similar to “bricklaying”, different SST binding domains are assembled into a plane
through sequence design and angle control between adjacent helices. Theoretically,
this method can be assembled into rectangles of any size. The edges of the rectangle
can be maintained flat by adding DNA single strands that pair complementarily, or
nanotubes can be formed by adding SSTs that connect two edge helices.

Each SST is equivalent to a pixel point. Researchers used 362 different SSTs to
assemble a “molecular canvas” that is 24 helix bundles long and 28 helix bundles
wide. Depending on the expected design of the figure, the idea of “paper cutting” can
be used to remove unnecessary SSTs from the “molecular canvas” to form structures
of different shapes. To improve

To increase the yield of structures and reduce structure aggregation, two methods
were used to seal the exposed chains at the edges, both of which achieved ideal
results. One method is to replace the sequence of the exposed binding domain with
a poly (T) chain of the same length, and the other method is to add a protective
chain. The sequence of the protective chain consists of a sequence that pairs
complementarily with the exposed binding domain and a poly (T) of 10–11 bases
long. Considering the experimental cost and the least number of chains, the second
method was chosen to successfully construct 107 patterns, including numbers,
letters, punctuation, Chinese characters, emojis, etc. The yield of constructing
figures by this method is 6–40% . Experiments have shown that after mixing various
different patterns that have been assembled, the patterns are independent of each
other and do not interfere with each other.

The method of assembling figures using SST to construct a two-dimensional
“molecular canvas” does not require careful adjustment of the stoichiometric ratio of

10.4 Single-Strand Tile Calculation 269

the added DNA chains. During the SST assembly process, nucleation is first sparse
and slow, and then assembly is completed quickly. This simple and modular method
effectively challenges the view that modular components (such as DNA Tiles) are
not suitable for assembling complex, individually addressable shapes.

In the same year, Yin Peng and others transformed the functional perspective of
SST from “pixel point” to “brick”, achieving a breakthrough from two-dimensional
canvas to complex three-dimensional structure [18]. Each “brick” is composed
of a DNA single strand 32 bases long, with four binding domains each 8 bases
long. Unlike the two-dimensional structure, the connection of SST is similar to
the connection of Lego blocks, with two types of connections: one is similar
to the connection of SST in the two-dimensional canvas, which is a horizontal
connection, and the other is a vertical connection. In order to construct the 90◦

.

dihedral angle required for the three-dimensional structure, two SSTs only pair
complementarily 8nt, that is, three-quarters of a helix. When constructing a three-
dimensional structure, every 8 bp is considered a layer, and all SSTs in the layer are
staggered in the same direction like “bricklaying”. The layers are arranged in a 90◦

.

counterclockwise rotation, that is, every four layers form a cycle unit.
A cube structure with a length of 10 helix bundles, a width of 10 helix bundles,

and a height of 80 bp (10H × 10H × 80B .) is constructed as a three-dimensional
molecular canvas. With an 8 bp double strand as a solid element, the three-
dimensional canvas can be abstracted into different voxels. The construction of
complex figures is like carving on a three-dimensional canvas.

Firstly, design the graphics. Based on a 10H × 10H × 80B . three-dimensional
canvas, establish the x, y, z axis spatial coordinate system. With the assistance of 3D
modeling software, unnecessary voxels can be removed from the three-dimensional
canvas according to the target structure, and the required SST can be selected.

Secondly, optimize the structure. After deleting some Tiles from the three-
dimensional canvas, there are exposed sequences at the boundary. In order to reduce
unwanted non-specific binding and improve the stability of the structure, protective
chains and boundary chains can be added to optimize the structure design. The
protective chain refers to the exposed 8nt sequence at the original boundary, which
is replaced with 8 consecutive thymidines. The boundary chain is a 16nt half Tile
that can merge with a previous 32nt complete Tile along the helical direction to form
a 48nt long chain.

After sequence and structure optimization, the automatic liquid dispenser adds
related DNA chains from the selected SST subset to anneal and form the structure.
Successfully constructed 102 different shapes, including ellipsoids, spheres, and
other cubic bodies, empty boxes, parallelograms, and other hollow structures. The
yield of most structures is between a few percent and 30%.

The construction of two-dimensional and three-dimensional molecular canvases
based on SST has realized the flexible construction of complex graphics. Although
all SSTs involved in the construction of the molecular canvas have roughly the same
configuration, their sequences are different. A large number of unique addressable
DNAs have dramatically increased the cost and difficulty of the experiment.

270 10 DNA Algorithmic Self-Assembly

Fig. 10.7 Schematic diagram of the connection of three reusable SSTs to construct nanoscale
patterns

Exploring low-cost and efficient programmable self-assembly methods has become
a major challenge.

Literature [19] proposed a general method for constructing scalable nanostrips
with only three reusable SSTs. The used S1 ., S2 ., and S3 . Tiles all have four binding
domains, as shown in the Fig 10.7, parts with the same color can match each other.
Two specific SSTs bind together, such as S1 . and S2 ., S2 . and S3 ., S3 . and S1 ., the
complementary pairing binding domains bind to form a helical structure. If no other
auxiliary chains are added, the three SSTs will assemble freely, and due to the
inherent curvature accumulation of SST, it will eventually form a DNA nanotube;
if edge protection chains are added, it can prevent the two edges of the tube from
complementing each other, forcing the DNA nanotube to open into a nanostrip. The
edge protection chain is determined according to the sequence of binding domains
1 and 2 of S1 ., dividing the binding domains 1 and 2 of S1 . into 3 parts, and the
different combinations of the three parts of complementary sequences form three
different protection chains, each with a length of 56 bases. In addition to controlling
the shape of the structure, a strategy of the concentration ratio of the edge protection
chain and the filling chain is proposed to control the length of the nanostrip. The
filling chain is to close the exposed areas on both sides of the nanostrip, with 4 on
each side. The proportion of nanostrips decreases as the concentration ratio between
the edge protection chain and the filling chain increases.

Literature [20] proposed a scheme for constructing a larger diameter nanotube
with only 2 SSTs involved, and constructed nanotubes with widths of about 100
and 300 nm. Similar to the previous SST construction nanostructure scheme, SST
is divided into four binding domains. In the design scheme of the 100 nm nanotube,

10.4 Single-Strand Tile Calculation 271

the sizes of the four binding domains are 10nt, 11nt, 10nt, 11nt; the sizes of the
four binding domains of the 300 nm nanotube are 9nt, 12nt, 9nt, 12nt. As shown
in the figure, the SST pairing methods of the two design schemes are the same:
the binding domain 1 of SST1 and the binding domain 3 of SST2 complement each
other, the binding domain 2 of SST1 and the binding domain 4 of SST2 complement
each other, and the binding domain 1 of SST1 and the binding domain 1 of SST2
complement each other.

Under the atomic force microscope, not only large-radius nanotubes were
observed, but also star-shaped Aster structures were observed. The hierarchical
assembly of 2 SSTs can explain this phenomenon: starting from the Aster structure
(the nucleation point of SST), through

Adding Tiles, multiple 2-helix nanowires grow and extend; nanowire bundles
extending from the same Aster structure are laterally interconnected through domain
exchange to form nanotubes. The hierarchical assembly strategy bypasses the
kinetic traps in the assembly process of flexible SSTs, which helps to construct
wider DNA nanotubes composed of 2 SSTs.

The 2-SST strategy may pave the way for building large-scale complex
supramolecular nanostructures from simple DNA assembly units to achieve
multifunctional applications, reduce the manufacturing cost of nanostructures,
especially in in vivo applications such as drug delivery.

The introduction of the SST strategy has dramatically increased the complexity
of constructing nanostructures based on DNA Tiles. The modular and scalable
method provides a controllable and programmable powerful platform for func-
tional nanomaterials and molecular computing. The assembly of nanostructures is
generally divided into two stages: the nucleation process and the growth process.
However, nucleation in the SST self-assembly process is random, and different
small nuclei exist in different positions of the target structure [21, 22]. In addition,
although SSTs have different sequences, the same structure and connection method
have resulted in low-probability events in the microscopic mechanism of SST
connection, so the overall assembly is very slow. Literature [23] proposed the
addition of DNA “seed chains” to trigger rapid and controlled nucleation, to promote
subsequent rapid growth and improve assembly speed.

The long seed chain contains multiple binding domains and multiple SST com-
plementary pairs, so the probability of the seed chain interacting with SST is greater,
the height of the nucleation free energy barrier is reduced, and the probability
of nucleation at the seed chain is greater. Secondly, computer simulations and
experiments have shown that the seed assembly strategy significantly improves the
optimal assembly temperature of the nanostructure, and the assembly temperature
of the seed strategy has increased by about 5 ◦ .C. In traditional SST systems at lower
temperatures, SST tends to bind and aggregate incorrectly, and if the nucleation
barrier is low, it leads to the incorrect formation of multiple nuclei. At higher
temperatures, the incorrect binding between SSTs will decrease, the nucleation
barrier will be larger, and the large-scale nucleation of SST will be inhibited. The
seed strategy reduces the height of the nucleation barrier, allowing SST assembly at
higher temperatures, maintaining the advantage of reducing incorrect binding while

272 10 DNA Algorithmic Self-Assembly

also promoting the nucleation process, and the SST largely follows the path guided
by the seed during the growth stage.

10.5 Universal DNA Computer Based on SST

As we know from the previous sections, various DNA Tile self-assembly structures
provide a convenient coding tool for DNA computing. Compared with other DNA
computing materials, we can intuitively see the calculation results and even the
entire calculation process with the help of nanoscale microscopes. This high degree
of visualization is a major feature of the DNA Tile computing model.

In these models, Tiles are of various shapes, showing different DNA winding
methods from the perspective of biomaterials, and different definitions of coding
or functional areas from the perspective of computing models. In other words,
when researchers build the functions of DNA computing models, they carefully
consider how the materials used interact with each other, and how to code and
execute algorithms to embed molecular self-assembly behavior into the algorithm
process, so different Tiles are often only used for computing functions that match
the structure itself.

The advent of SST has injected new blood into the DNA Tile family. Since its
theoretical first publication in Science in 2012, the “Lego”-style splicing method
of DNA single strands in the nano world has been eye-opening; later, the assembly
mechanism was gradually explored, and researchers analyzed its assembly stability
from the perspective of chemical reaction principles in the three axes of the
Cartesian coordinate system, giving SST the ability to build like building blocks; by
2015, a universal coding strategy in 3D space was formally proposed, constructing
a coding space composed of 30,000 unique SSTs. These achievements prove to the
world that, due to a complete self-assembly mechanism and feasible coding strategy,
this oligonucleotide chain with only 32 base lengths has the ability to serve as a
universal computing material.

As we know from the introduction in reference [23], when using DX Tile
to output the calculation process of the Sierpinski triangle, in order to ensure
controllable input values, single-stranded DNA and DNA origami were introduced
as calculation starting points, and named “seeds”. Seeds are similar to a function
in an electronic computer that reads for input, passing the values entered by the
user to the function that performs the calculation and starts the program running.
Since DNA computing occurs in parallel in liquid, the seed’s transmission function
is manifested in the partial sequence complementing the input sequence, used to
capture the input DNA floating in the solution; the startup function is manifested in
using spatial organization ability to write the input sequence into a suitable position
to start the complementary reaction. DNA origami with unique addressing naturally
takes on the task of seeds, and DNA origami technology will be introduced in the
next section. This section uses two examples to show instances of building universal
computing models using SST with the intervention of DNA origami seeds.

10.5 Universal DNA Computer Based on SST 273

10.5.1 Iterative Boolean Circuit Computing Model Based on
SST

This model was proposed in literature [24] in 2019, proposing the creation of a
reprogrammable self-assembly system to make up for the small size of the tiles
growing the Sierpinski triangle in the aforementioned algorithm. Since hundreds of
Tiles are needed, SST becomes the optimal choice. The design of this biological
computing model goes through the following five levels.

Design of Abstract Computing Model
The abstract computing model of the system is named Iterated Boolean Circuit
(IBC). The model uses multiple layers of Boolean logic gate arrays that are executed
repeatedly, with Boolean logic gates locally connected within and between layers.

In terms of composition, the IBC has two types of Boolean logic gates: logic
gates and edge gates. A circuit with an input bit number of n and iteration layers of l
requires (n− 1)l . types of logic gates and 2l edge gates. Each logic gate has 2 inputs
and 2 outputs, and each edge gate has 1 input and 1 output.

In terms of function, the system will perform calculations by repeatedly iterating
through the circuit layers: starting from the input position on the left, adding copies
of the circuit layer one by one, until it reaches a fixed state or goes into a loop. Since
all (n + 1)l . Boolean logic gate logic functions are specified by the user, this is a
universal computing model that can be used to simulate the functions of many other
computing models.

Abstract Tile Assembly Model
The second-level design abstracts Boolean logic gates into square Tiles, describing
the self-assembly behavior of individual Tiles guided by the “glue” on the four
edges. The glue carries the assembly information encoded by humans. Since DNA
computation occurs in numerous duplicate copies present in the solution, the Tile
assembly model assumes an excess of each monomer in the solution, meaning they
will not be exhausted.

The relationship between the Tile model and the first-level IBC. Boolean logic
gates are implemented by a single abstract square Tile, each Tile contains two or four
abstract squares, representing glue, corresponding to the input/output of Boolean
logic gates. The difference is that a 2-input 2-output logic gate contains four abstract
squares, while a 1-input 1-output edge gate contains two abstract squares. The model
assumes that Tiles start to attach and grow from the seed position representing
circuit input, the formation of the assembly represents the execution of the circuit,
and in principle, it continues forever.

The model also considers a cooperative assembly mechanism: to ensure the
correct assembly rate, during the growth of the assembly, a Tile can only attach
to the assembly when at least two types of glue match.

Since the circuit executes in the horizontal direction and the glue encodes in the
vertical direction of the circuit, this design also brings an important benefit. From

274 10 DNA Algorithmic Self-Assembly

the perspective of the formation of self-assembled structures, when DNA nanotubes
or nanostrips form, vertical assembly can create substantial kinetic barriers to
spontaneous nucleation. Therefore, suppressing spontaneous nucleation means a
high assembly yield at the molecular implementation stage.

Design of Proofreading Blocks
In the third abstract level, each Tile of the second level is divided into four
“proofreading blocks”. There are eight glues around the Tile, two pairs correspond
to one bit of input/output of the logic gate. The central glue is used for proofreading,
and their positions within the proofreading block are unique.

The introduction of proofreading blocks makes matching more reliable. Only
when both bits of the proofreading block match the assembly can the block
stably attach. Compared with direct implementation, the addition of a proofreading
mechanism reduces the matching error rate.

SST Binding Domain Design
The fourth abstract level defines the correspondence of SST binding domains,
mainly considering the implementation process other than sequence design.SST
logically contains four binding domains, each domain corresponds to each glue,
and the proofreading block in the third level is implemented by an SST molecule.

In addition to the binding relationship, the fourth level also considers several key
geometric factors during implementation:

(i) SST lattice. This includes selecting an appropriate number of bases for the
binding domain.

(ii) Input adapter chain. This includes cascading the input adapter chain after DNA
origami seeds to initiate the assembly of molecular logic gates.

(iii) Labeling position. This includes choosing the modification position of biotin
labeling on SST for visualizing the computation process.

DNA Sequence Design
Although in the first four levels of design, the expected behavior can be described
by the binding relationship of SST, the effectiveness of the abstract model in the test
tube depends on the uniformity and specificity of the attachment energy between the
binding domains, so the DNA sequence design of the fifth level is still challenging.
This level requires that DNA strands can perform the required actions and are not
prone to other actions, including:

(i) False nucleation: SST grows spontaneously without starting from the seed.
(ii) SST attachment error: Unmatched domains attach.

At the same time, there is evidence that random sequences and lightly designed
sequences can undergo SST self-assembly, but the high mismatch rate is not
suitable for algorithmic assembly. Therefore, in the sequence design level of this
model, based on the NUPACK and ViennaRNA two nucleic acid analysis models, a
temporary energy model was built to generate DNA sequences, the model includes
the following considerations:

10.5 Universal DNA Computer Based on SST 275

(i) Ensure the energy uniformity of SST in tiling events.
(ii) Ensure the release of binding between adjacent nanotubes during tile attach-

ment.
(iii) Minimize the mismatch energy between the correct domain and the wrong

domain to enhance specificity.

Specifically, a random local search algorithm is used in the above energy model to
solve the multi-objective optimization problem, aiming to obtain a set of molecules
to implement the expected interactions in the fourth-level design.

In the above iterative Boolean function computation model, SST has programma-
bility, which is crucial for demonstrating various circuits and creating patterns of
any shape. For programmability, the set of SSTs growing on origami seeds can be
regarded as an “algorithmic molecular canvas”, and the concept of layered design
allows researchers to “carve” algorithms like Tile programmers to generate more
and more deterministic algorithms for the required function.

10.5.2 Computation Model Based on Repeatable SST

The model was proposed in 2022 in literature [25], aiming to combine DNA origami
structures with fewer SSTs to construct a portable and reusable DNA programmable
self-assembling nanostructure service for DNA computation. To avoid SSTs falling
into kinetic traps during the assembly process, the model cleverly introduces a
framework-shaped DNA origami as a seed, simplifies the model with the strategy
of “offset connection”, and only uses two types of reusable SST units in the final
model. The design and implementation of the model go through the following three
levels:

1. DNA programmable self-assembling nanostructures.
This level discusses how self-assembling nanostructures, constructed by two

types of nanomaterials, work as a computational model. The nanostructure
includes a framework-shaped DNA origami and an SST computational core.
Therefore, the construction and operation of the model proceed in the following
two steps:

(i) Constructing DNA origami. Once the construction is completed, the restric-
tions for performing calculations are in place, and the calculation can begin.

(ii) Filling in SSTs. The growth process of SSTs represents the execution of the
calculation.

After the two steps are completed, the calculation results can be read from
the self-assembling nanostructure jointly generated by DNA origami and SST.

2. DNA Origami
This level discusses how DNA origami, as a limiting factor and initiator,

works, and also includes considerations for the design of DNA origami struc-
tures. DNA origami is divided into two parts:

276 10 DNA Algorithmic Self-Assembly

(i) Skeleton. It is composed of eight parallel double helices, which ensure the
overall stability of the self-assembling nanostructure.

(ii) Framework. It is composed of ten parallel double helices, with the first row,
the last row, and the parts of DNA on the left and right columns serving as
supporting edges. The supporting edges can limit the growth of SSTs and
capture SST molecules from the inside, allowing SSTs to fill in from four
directions simultaneously, which is used to limit and initiate reactions.

Since the skeleton and framework respectively ensure the robustness of the
self-assembling structure and computational function, DNA origami can serve
as a seed to pass on input values and initiate computation.

3. SST Computational Core
This level mainly discusses how SSTs perform computational functions in

the origami framework, including the binding relationship of SSTs and growth
restrictions. The binding relationship is shown in Fig 10.7. This model uses
two types of SST structures S1 . and S2 .. S1 .’s binding domain from the 5’ to 3’
direction is [a, b, c, d], S2 .’s binding domain is [c*, d*, a*, b*], therefore, they can
alternately connect and assemble in the 2D plane. The growth of SSTs is limited
by the DNA origami framework, and the restricted filling process includes the
three steps.

(i) The thin supporting edge is on the outermost layer, composed of reserved
scaffold chains.

(ii) The SSTs directly bound to the supporting edge are called “auxiliary
chains”. They have two binding domains complementary to the scaffold
sequence, representing the values input by the user.

(iii) Other SSTs (S1 ., S2 .) bind to the binding domains of the auxiliary chains
from four directions at the same time and gradually fill towards the center,
representing the process and result of the computation.

In summary, this strategy of filling SSTs into a rigid nanostructure assembled
within the thin edge of the origami framework, and then secondarily assembling
the required shape, will greatly reduce the cost of controllable self-assembly and
improve efficiency.

10.6 DNA Origami Computation

DNA origami technology is a branch of self-assembling nanotechnology. Compared
with DNA Tiles, DNA origami also precisely designs nucleic acid sequences,
allowing different single-stranded DNA to spontaneously complement and assemble
into specific structures. The difference is that DNA origami additionally introduces
a long single-stranded DNA as a scaffold to assist the assembly process.

This section first explains what DNA origami technology is, and then introduces
its many researches in the field of DNA computation, including programmable self-

10.6 DNA Origami Computation 277

assembly, surface computation based on origami, and computational models where
the origami itself serves as a computable structure.

10.6.1 DNA Origami Technology

DNA Origami (DNA The concept of origami was first proposed by Rothemund at
the California Institute of Technology in 2006 [26]. This is a practical technique
that can guide DNA strands to assemble from the bottom up to construct specific
shape structures within the range of tens to hundreds of nanometers. By artificially
encoding and designing hundreds of short staple chains (staple), a single-stranded
circular DNA scaffold chain (scaffold) usually extracted from the M13mp18
bacteriophage of E. coli is bound and folded into a preset shape.

In recent years, the research scope of DNA origami is still expanding, the
complexity of DNA origami structure morphology is constantly increasing, and the
design and implementation means are also being optimized and innovated. From the
development of two-dimensional symmetry at the geometric shape level to three-
dimensional asymmetry [27], and then to the secondary assembly [28] and dynamic
assembly [29] at the assembly method level. There are also studies on larger or
smaller scale origami, and the exploration of origami with other materials (such
as RNA) [30]. As well as innovations in folding methods: only scaffold chains
and multiple scaffold chains [31]. With the development of DNA origami design
software, design, simulation and even automatic generation tools are emerging
[32], which is very user-friendly. The emergence of eye-catching results such as
nanoflasks [33], DNA puzzles [34], DNA portraits [35], etc., proves the powerful
ability of DNA origami to construct nanostructures.

From its design principle, it can be known that DNA origami has addressability
and programmability. Addressability means that after the bottom-up splicing is over,
the designer can access any specific base position on any staple on the origami
through the sequence, and programmability means that the designer can easily
operate the sequence to create any shape or pattern within the scaffold range. This
addressability and programmability make it convenient for designers. Designers can
give assembly logic and restrictions, allowing DNA origami monomers or between
monomers to self-assemble according to established rules. This is the core of DNA
self-assembly and the core idea of establishing a computational model based on
DNA origami. The implementation results of many of the above-mentioned studies
show that it also has stability in vitro, and stability provides an experimental basis
for DNA origami for computational materials.

The performance of DNA origami in computational scenarios compared to DNA
Tiles, by introducing scaffold chains, has improved the problem of a large number
of short chains involved in Tile self-assembly, making DNA origami a larger and
more stable material. In terms of computational applications, a larger scale means
better information storage capacity, that is, a DNA origami unit can carry more
codable addresses, which increases the diversity of models, and even large origami

278 10 DNA Algorithmic Self-Assembly

can be used to “organize” smaller Tiles. These characteristics make researchers have
an easy-to-use nanotool when constructing and implementing DNA computational
models.

10.6.2 Programmable Self-Assembly of DNA Origami

The programmable self-assembly of DNA origami refers to viewing the origami
monomer as a unit, tiling it on a plane like a Tile, or assembling it into a specific
shape. Limited by the length of the universal scaffold chain 7249 bases, the size of
the DNA origami monomer is limited to 50–200 nm. Therefore, by encoding a part
of the base sequence on the DNA origami, allowing the origami to assemble and
amplify into larger-scale or even micron-level DNA structures, is a strategy to break
through the size limit.

Under normal circumstances, the programmable self-assembly between origami
can be achieved through the interaction between nucleic acids, such as base
complementary pairing. The “Mona Lisa” portrait in literature [35] is based on
sticky end coding edges. This study uses local assembly rules and divides the self-
assembly process into multiple stages. Each square represents an origami monomer.
Four monomers are assembled into a 2×2.array in the first layer, and so on, four 4×4.
arrays are assembled into a 8× 8. array in the third layer. This layered design allows
the edge codes of different arrays at the same stage to be reused, and the same scale
assembly can be completed with fewer edge codes; and in principle, it reduces the
number of origami participating in the reaction within a given time period, which
is beneficial to reduce erroneous interactions. The layered design is also reflected
in the molecular implementation process, the number of double helices involved in
coding on the edge of the origami, the reaction temperature decreases layer by layer,
and the reaction duration increases layer by layer. The entire self-assembly process
is guaranteed by the layered design and experimental aspects, and the final product
is an 8 ×. 8 scale, 0.5 square micron-sized nanoarray used as a molecular canvas,
drawing portraits, roosters, circuits and other diverse patterns, intuitively showing
the precise patterning at the nanoscale.

In addition to complementarity of base sequences, self-assembly can also
be achieved through other forms of nucleic acid action, such as base stacking.
Literature [36] uses the inherent non-sequence specificity of base stacking forces
to propose a self-assembly scheme for random coding. Finally, a micrometer-scale
planar DNA array with random assembly function was constructed, including the
realization of random ring patterns, mazes, and trees. This shows that by making
corresponding changes to the coding strategy, programmable self-assembly arrays
with specific functions can also be constructed.

The programmable self-assembly of DNA origami is similar to the tiling or
three-dimensional assembly of DNA Tiles, providing a structural basis for DNA
computing. Because of its larger area, the two-dimensional array assembled can
serve as a substrate for organizing and accommodating other DNA computing

10.6 DNA Origami Computation 279

models; it can also directly map the assembly process to logic and algorithms,
allowing DNA origami itself to participate in the calculation as a computing
element. These two application methods will be introduced in the following two
sections.

10.6.3 DNA Origami Surface Computing

From the addressability of DNA origami, we know that its surface area of nearly
ten thousand square nanometers contains about 200 addressable sites. This global
addressing feature makes it an accurate positioning template or framework down to
the base resolution, with obvious results in spatial organization.

In response to the problem that the scale and computing speed of traditional DNA
circuits are easily constrained by the increase in the number of molecules, some
theoretical studies believe that certain means can be used to divide the DNA circuit
into regions to optimize the computing speed and expand the circuit scale. DNA
origami, where each base on the surface can be addressed, is well suited for this
task. Seelig and others at the University of Washington discussed a computational
architecture of DNA strand displacement circuits in 2013 [37], proposing that spatial
isolation can be achieved through the surface of two-dimensional DNA origami,
making it easier to design circuits based on DNA. The Seelig team successfully
moved scalable DNA logic gates and their transmission channels to a platform
based on rectangular DNA origami in 2017 [38], completing the co-location of
circuit elements by fixing independent hairpins on the surface of DNA origami.
The arrangement and spatial organization of the origami for the hairpin logic gates
make the reaction preferentially occur between “neighbors”, which allows the signal
transmission to proceed along the carefully arranged hairpins like wires. Compared
with the molecular circuits diffused in the solution, the interactions between the
circuit elements located on the surface are limited to the proximal end, which
increases the reaction speed.

Like molecular circuits, molecular computing models can also achieve spatial
positioning on the surface of DNA origami. In 2019, Chao Jie and others at
Nanjing University of Posts and Telecommunications constructed a single-molecule
DNA maze navigator [39], whose navigation principle relies on the cascade strand
displacement reaction on the origami surface. After the navigation is initiated by
the trigger site A, it automatically advances along the path defined by the DNA
hairpin and autonomously explores one of the possible paths of the tree. In terms
of application, a certain leaf node can be defined as an exit. By exploring all
possible paths with a single molecule, and then using molecular purification means
to separate the origami that has passed through a certain exit, the specific solution
path between two points can be obtained from the collection of origami navigators.
The final study defined a ten-node rooted tree on the DNA origami platform and
performed depth-first search in parallel in the solution. In addition to the feature
that the DNA computing process can be directly associated with biomolecules,

280 10 DNA Algorithmic Self-Assembly

this research has the potential to translate biomedical sensing and decision-making
problems into graphical expressions on the surface of DNA origami.

The characteristics of origami participating in the positioning of computing
elements are:

(i) The interaction between circuit elements is limited to neighbors, and the
overall reaction speed is faster.

(ii) Spatial positioning results in a higher effective concentration of circuit com-
ponents than the effective concentration of components in a mixed solution,
which helps to regulate stoichiometry.

(iii) Since the information flow no longer relies on sequence specificity control, the
sequence between components is allowed to be reused.

(iv) Different functional modules can be divided in the same test tube, which is
convenient for some application scenarios. Without the precise positioning and
organization of DNA origami for molecular groups, these DNA computing
applications are not easy to achieve.

10.6.4 Computable DNA Origami Structure

Due to its integrity, stability, and programmability, DNA origami, like DNA Tiles,
can also be used to implement algorithmic operations, interact with other structures,
and execute computing processes. In 2022, Xu Jin and others at Peking University
[40] proposed and implemented a graph computing model based on DNA origami.
This research proposes a group of DNA nano “agents” as computing units, each
computing unit is composed of a DNA origami, which can be interconnected with
two or more other computing units through DNA probes.

This study has realized a specific instance of the three-coloring of a graph, an
NP-complete problem, as shown in Fig. 10.8. A 6-vertex graph needs to be colored
with 3 colors, and the two vertices on an edge cannot be the same color. The color
information of the DNA computing unit is displayed by color markers, specifically
assigned to 3 different DNA origami structures, which are marked with different
patterns on their surfaces for color marker recognition under a microscope. The
DNA molecules used for connection are called DNA probes, which encode the
edge set through the structural information of the graph, specifically manifested as
several arms with sticky ends protruding from each DNA origami. According to the
definition of the graph vertex coloring problem, there is no edge with the same color
at both ends, so such DNA probes will not be generated when encoding the edge set.
When the operation starts, under the action of the DNA probe, the DNA computing
unit freely combines and connects in three-dimensional space according to the
encoded graph information, finally forming a 3-color 6-vertex graph representing
the calculation result. The calculation result can be directly read under an atomic
force microscope. This study shows that DNA origami and DNA Tile can serve

10.6 DNA Origami Computation 281

Fig. 10.8 Principle and results of the 3-vertex graph coloring problem based on DNA origami
self-assembly

as computing components, performing molecular calculations and displaying the
calculation process and results in self-assembled structures.

In addition to executing specific calculation instances, molecular interactions
can also be used for data encryption, serving as a unique information security
method. Considering the structural potential of self-assembled structures, literature
[41] uses DNA origami for information steganography. This study encrypts and
stores information as a continuous dot pattern in a manner similar to Braille by
designing certain specific positions of a series of scaffold chains as encryption bits.
During the specific encryption and decryption process, biotin-modified single-strand
DNA is attached to the encryption bit of the scaffold chain to complete encryption;
after adding a specific key staple chain, the scaffold chain with modifications
is assembled into a complete DNA origami to complete decryption. This study
attempts to generate and transmit origami ciphertext for letters A–Z and numbers
0–9, and the final decryption process, including sample processing and AFM
scanning recognition, takes about 1–2 hours. Although this is longer than electronic
computers, the process complies with the “CIA triad” of information security
(confidentiality, integrity, availability), and provides a novel molecular solution for
information encryption.

As a highly addressable, programmable nanostructure, DNA origami makes
many models and engineering that precisely depend on molecular geometry and
molecular dynamics possible, and also inherits and carries forward the pro-
grammable self-assembly ability of DNA Tile. The computing research based on
DNA origami mentioned in this section also benefits from this, but these are just the

282 10 DNA Algorithmic Self-Assembly

tip of the iceberg of its application scenarios. Some computing models that depend
on the precise three-dimensional spatial position of molecules and manipulation,
and the operation process relies on molecular organization, can in principle be
implemented on the DNA origami platform.

References

1. Seeman, N.C.: Nucleic acid junctions and lattices. Journal of Theoretical Biology 99(2), 237–
247 (1982).

2. Fu, T.J., Seeman, N.C.: DNA double-crossover molecules. Biochemistry 32(13), 3211–3220
(1993).

3. Zheng, J., Constantinou, P.E., Micheel, C., et al.: Two-dimensional nanoparticle arrays show
the organizational power of robust DNA motifs. Nano Letters 6(7), 1502–1504 (2006).

4. Yan, H., Park, S.H., Finkelstein, G., et al.: DNA-templated self-assembly of protein arrays and
highly conductive nanowires. Science 301(5641), 1882–1884 (2003).

5. Ma, R.-I., Kallenbach, N.R., Sheardy, R.D., et al.: Three-arm nucleic acid junctions are flexible.
Nucleic Acids Research 14(24), 9745–9753 (1986).

6. Wang, X., Seeman, N.C.: Assembly and characterization of 8-arm and 12-arm DNA branched
junctions. Journal of the American Chemical Society 129(26), 8169-8176 (2007).

7. Shi, X., Lu, W., Wang, Z., et al.: Programmable DNA tile self-assembly using a hierarchical
sub-tile strategy. Nanotechnology 25(7), 075602 (2014).

8. Liu, Y., Ke, Y., Yan, H.: Self-assembly of symmetric finite-size DNA nanoarrays. Journal of
the American Chemical Society 127(49), 17140–17141 (2005).

9. Park, S.H., Pistol, C., Ahn, S.J., et al.: Finite-size, fully addressable DNA tile lattices formed by
hierarchical assembly procedures. Angewandte Chemie International Edition 118(5), 749–753
(2006).

10. Rothemund, P.W.K., Papadakis, N., Winfree, E.: Algorithmic self-assembly of DNA Sierpinski
triangles. PLoS Biology 2(12), e424 (2004).

11. Wang, H.: Proving theorems by pattern recognition–II. Bell System Technical Journal 40(1),
1–41 (1961).

12. Winfree, E.: Algorithmic self-assembly of DNA. Ph.D. thesis, California Institute of Technol-
ogy (1998).

13. Schiefer, N., Winfree, E.: Universal computation and optimal construction in the chemical
reaction network-controlled tile assembly model. In: Proceedings of the DNA Computing and
Molecular Programming: 21st International Conference, DNA 21, Boston and Cambridge,
MA, USA, August 17–21, 2015. pp. F. Springer (2015).

14. Winfree, E.: Algorithmic self-assembly of DNA: Theoretical motivations and 2D assembly
experiments. Journal of Biomolecular Structure and Dynamics 17(sup1), 263–270 (2000).

15. Boneh, D., Dunworth, C., Lipton, R.J., et al.: On the computational power of DNA. Discrete
Applied Mathematics 71(1–3), 79–94 (1996).

16. Brun, Y.: Self-assembly for discreet, fault-tolerant, and scalable computation on internet-sized
distributed networks. Ph.D. thesis, University of Southern California (2008).

17. Wei, B., Dai, M., Yin, P.: Complex shapes self-assembled from single-stranded DNA tiles.
Nature 485(7400), 623–626 (2012).

18. Ke, Y., Ong, L.L., Shih, W.M., et al.: Three-dimensional structures self-assembled from DNA
bricks. Science 338(6111), 1177–1183 (2012).

19. Shi, X., Chen, C., Li, X., et al.: Size-controllable DNA nanoribbons assembled from three types
of reusable brick single-strand DNA tiles. Soft Matter 11(43), 8484–8492 (2015).

20. Xu, F., Wu, T., Shi, X., et al.: A study on a special DNA nanotube assembled from two single-
stranded tiles. Nanotechnology 30(11), 115602 (2019).

References 283

21. Jacobs, W.M., Reinhardt, A., Frenkel, D.: Rational design of self-assembly pathways for
complex multicomponent structures. Proceedings of the National Academy of Sciences
112(20), 6313–6318 (2015).

22. Wayment-Steele, H.K., Frenkel, D., Reinhardt, A.: Investigating the role of boundary bricks in
DNA brick self-assembly. Soft Matter 13(8), 1670–1680 (2017).

23. Zhang, Y., Reinhardt, A., Wang, P., et al.: Programming the nucleation of DNA brick self-
assembly with a seeding strand. Angewandte Chemie International Edition 59(22), 8594–8600
(2020).

24. Woods, D., Doty, D., Myhrvold, C., et al.: Diverse and robust molecular algorithms using
reprogrammable DNA self-assembly. Nature 567(7748), 366–372 (2019).

25. Chen, C., Xu, J., Ruan, L., et al.: DNA origami frame filled with two types of single-stranded
tiles. Nanoscale 14(14), 5340–5346 (2022).

26. Rothemund, P.W.: Folding DNA to create nanoscale shapes and patterns. Nature 440(7082),
297–302 (2006).

27. Douglas, S.M., Dietz, H., Liedl, T., et al.: Self-assembly of DNA into nanoscale three-
dimensional shapes. Nature 459(7245), 414–418 (2009).

28. Chen, C., Xu, J., Shi, X.: Multiform DNA origami arrays using minimal logic control.
Nanoscale 12(28), 15066–15071 (2020).

29. Berg, W.R., Berengut, J.F., Bai, C., et al.: Light-activated assembly of DNA origami into
dissipative fibrils. Angewandte Chemie 135(51), e202314458 (2023).

30. Wang, P., Ko, S.H., Tian, C., et al.: RNA-DNA hybrid origami: folding of a long RNA single
strand into complex nanostructures using short DNA helper strands. Chemical Communica-
tions 49(48), 5462–5464 (2013).

31. Dai, K., Gong, C., Xu, Y., et al.: Single-stranded RNA origami-based epigenetic immunomod-
ulation. Nano Letters 23(15), 7188–7196 (2023).

32. Selnihhin, D., Andersen, E.S.: Computer-aided design of DNA origami structures. In: Compu-
tational Methods in Synthetic Biology. pp. 23–44 (2015).

33. Han, D., Pal, S., Nangreave, J., et al.: DNA origami with complex curvatures in three-
dimensional space. Science 332(6027), 342–346 (2011).

34. Rajendran, A., Endo, M., Katsuda, Y., et al.: Programmed two-dimensional self-assembly of
multiple DNA origami jigsaw pieces. ACS Nano 5(1), 665–671 (2011).

35. Tikhomirov, G., Petersen, P., Qian, L.: Fractal assembly of micrometre-scale DNA origami
arrays with arbitrary patterns. Nature 552(7683), 67–71 (2017).

36. Tikhomirov, G., Petersen, P., Qian, L.: Programmable disorder in random DNA tilings. Nature
Nanotechnology 12(3), 251–259 (2017).

37. Muscat, R.A., Strauss, K., Ceze, L., et al.: DNA-based molecular architecture with spatially
localized components. In: ACM SIGARCH Computer Architecture News 41(3), 177–188
(2013).

38. Chatterjee, G., Dalchau, N., Muscat, R.A., et al.: A spatially localized architecture for fast and
modular DNA computing. Nature Nanotechnology 12(9), 920–927 (2017).

39. Chao, J., Wang, J., Wang, F., et al.: Solving mazes with single-molecule DNA navigators.
Nature Materials 18(3), 273–279 (2019).

40. Xu, J., Chen, C., Shi, X.: Graph computation using algorithmic self-assembly of DNA
molecules. ACS Synthetic Biology 11(7), 2456–2463 (2022).

41. Zhang, Y., Wang, F., Chao, J., et al.: DNA origami cryptography for secure communication.
Nature Communications 10(1), 5469 (2019).

284 10 DNA Algorithmic Self-Assembly

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Chapter 11
RNA Computing

The emergence of DNA computing models naturally gave rise to the development
of RNA computing. However, over the past three decades, DNA computing has
advanced rapidly, while RNA computing has progressed more slowly, primarily
due to the structural characteristics of RNA molecules. This chapter focuses on the
computational properties of RNA molecules, RNA computing models for solving
NP-complete problems, and related research on RNA computing in the context of
logic gates and logic circuits.

11.1 Computational Characteristics of RNA Molecules

Based on DNA computation [1], RNA computation research emerged [2]. However,
as of the completion of this book, there have been relatively few studies on using
RNA molecules to solve NP-complete problems, primarily due to the following
characteristics of RNA molecules.

(1) The five-carbon sugar that constitutes RNA molecules is ribose, which has a
hydroxyl group (–OH) at the 2'

. position. This makes RNA significantly more
biologically active than the deoxyribose in DNA molecules. Additionally, the
half-life of RNA in biological systems is much shorter than that of DNA
molecules.

(2) Most RNA molecules in biological systems primarily exist as single strands.
Under specific conditions, they often fold into more complex and diverse
higher-order structures, making RNA structure prediction significantly more
challenging.

(3) RNA molecules exhibit poor stability in in vitro experiments. They are highly
susceptible to degradation by external nucleases and require stringent experi-
mental conditions.

(4) The key enzyme for RNA synthesis, RNA polymerase, requires a promoter
sequence and is sensitive to high temperatures. As a result, RNA molecules

© The Author(s) 2025
J. Xu, Biological Computing, https://doi.org/10.1007/978-981-96-3870-3_11

285

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-96-3870-3protect T1	extunderscore 11&domain=pdf
https://doi.org/10.1007/978-981-96-3870-3_11
https://doi.org/10.1007/978-981-96-3870-3_11
https://doi.org/10.1007/978-981-96-3870-3_11
https://doi.org/10.1007/978-981-96-3870-3_11
https://doi.org/10.1007/978-981-96-3870-3_11
https://doi.org/10.1007/978-981-96-3870-3_11
https://doi.org/10.1007/978-981-96-3870-3_11
https://doi.org/10.1007/978-981-96-3870-3_11
https://doi.org/10.1007/978-981-96-3870-3_11
https://doi.org/10.1007/978-981-96-3870-3_11
https://doi.org/10.1007/978-981-96-3870-3_11

286 11 RNA Computing

Fig. 11.1 Central dogma

cannot be amplified on a large scale using methods analogous to PCR for DNA
amplification. As of the completion of this book, the cost of commonly used
methods for obtaining large quantities of RNA molecules remains significantly
higher than that for DNA molecules.

The aforementioned characteristics make RNA molecules less suitable for
solving large-scale NP-complete problems in vitro. However, in the “central
dogma” that describes the transmission and operation of genetic information within
biological systems (see Fig. 11.1), RNA molecules play a crucial role in the three
fundamental processes: DNA replication, transcription, reverse transcription, and
protein translation [3]. Additionally, RNA molecules exhibit a wide variety of types
and functions. Beyond messenger RNA (mRNA), which carries genetic information,
transfer RNA (tRNA), which transports amino acids, and ribosomal RNA (rRNA),
there are also microRNAs (miRNAs) that regulate gene expression by binding
to mRNA, thereby reducing its stability or inhibiting its translation. Furthermore,
small interfering RNAs (siRNAs) and short hairpin RNAs (shRNAs) are involved
in post-transcriptional gene silencing, while long non-coding RNAs (lncRNAs)
play significant roles in gene expression regulation, X chromosome inactivation,
transcriptional repression, small molecule metabolism, and other physiological
processes.

Owing to the diverse structures, physicochemical properties of RNA molecules,
and their pivotal role in processing genetic information within biological systems,
RNA molecules exhibit unique advantages in computational applications. By inte-
grating the principles of biological computing with the mechanisms of information
storage and processing in living organisms, they enable logical regulation and
processing of intracellular information.

11.2 RNA Computation Model for Solving NP-Complete
Problems

In 2000, evolutionary biologist Laura Landweber and others at Princeton University
[2] first introduced RNA molecules into DNA computation research and realized a
biological computation solution for the 3 × 3. “knight problem” on the chessboard.
This problem is to find a set of position configurations where no one piece can
attack other pieces, which can also be described as solving the following specific
SAT satisfiability problem:

11.2 RNA Computation Model for Solving NP-Complete Problems 287

. ((¬h ∧ ¬f) ∨ ¬a) ∧ ((¬g ∧ ¬i) ∨ ¬b) ∧ ((¬d ∧ ¬h) ∨ ¬c) ∧ ((¬c ∧ ¬i) ∨ ¬d)

∧ ((¬a ∧ ¬g) ∨ ¬f)

Where a, b, c, d, e, f, g, h., and i represent the positions on the chessboard,
“true” means there is a knight on the position, and “false” means there is no knight.
This model uses different sequences of DNA molecules to represent the state of
a specific position on the chessboard, that is, there is a “knight” or “blank” on this
position. The model first synthesizes a total of 1024 10-bit DNA chains, representing
a DNA data pool that includes all possible chessboard configurations. The structure
of its chain is as follows:

5'
. prefix (24nt)-position a (value 0 or 1, 15nt)-interval (5nt)-position b (value 0

or 1, 15nt)-interval (5nt)-position j (value 0 or 1, 15nt)-suffix (32nt) 3'
.

The model then reverse transcribes the synthesized DNA data pool to obtain the
required RNA data pool; it cleverly uses ribonucleic acid H to specifically cut RNA
molecules in the DNA-RNA double strand, thereby removing the specified RNA
fragments from the data pool.

To determine the satisfaction of ((¬h ∧ ¬f) ∨ ¬a). as an example, the algorithm
steps are as follows:

(1) Starting from position a, perform the OR operation and divide the RNA data
pool into two equal parts. Add the DNA chain sequence representing a = 0. to
one part. After renaturation, use ribonucleic acid H to disrupt the condition of
a = 0., thus accomplishing the determination of a = 1.. Similarly, disrupt the
chains where there are knights at positions h and f (i.e., h = 1. and f = 1.).

(2) Add the DNA chain sequence representing a = 1. to the other part. After
renaturation, use ribonucleic acid H to disrupt the condition of a = 1.,
completing the determination of a = 0..

(3) Collect the RNA molecules from the above two parts that have not been
destroyed by ribonucleic acid, purify and amplify them, and then mix them.
At this time, the RNA library meets ((¬h ∧ ¬f) ∨ ¬a)..

(4) After completing the above steps, proceed to step 2 and start the relevant
screening operations from position b (see Fig. 11.2).

Finally, after multiple rounds of screening, all RNA fragments without solutions
are removed from the data pool. The remaining full-length chains are gel-separated
and recovered through reverse transcription and PCR, obtaining the correct answer.
The schematic diagram of the algorithm is shown in Fig. 11.2. The final result
diagram is obtained through gel electrophoresis, and one of the correct answers,
corresponding to the values at positions a to i, is 001011000.

The RNA computing model described in this study still necessitates the involve-
ment of DNA. Specifically, the required RNA database is obtained by first con-
structing a DNA library and then reverse transcribing it. Moreover, the core of
the calculation–ribonucleic acid H targets the RNA strand within the DNA-RNA
heterologous duplex and is classified as a non-sequence-specific endonuclease.

288 11 RNA Computing

i
RNA library

START

1. Operation

Destroy a=1

Destroy a=0

Destroy f=1

Destroy h=1

2. Operation

Destroy b=1

Destroy b=0

Destroy g=1

Destroy i=1

Readout

END

DNA
RNase H

a b c

d

h

f

g

e

...

...destroy, purify amplify and mix, then

meets ((¬h ¬f) ¬a)

...

i

h

g

f

e

d

c

b

a

Fig. 11.2 Biological computing algorithm and result reading of the “Knight’s Problem”

11.3 Related Research on RNA Computing in Logic Gates
and Logic Circuits

With the rise of DNA logic gate research, logic gates involving RNA molecules
are also constructed from basic logic gates, and are expected to be applied to
gene expression regulation, disease detection and treatment research. This section
introduces RNA sequence prediction, regulation of mRNA molecules, combination
of interfering RNA and nucleic acid aptamers, and combination of gene editing
techniques.With the rise of DNA logic gate research, logic gates involving RNA
molecules are also constructed from basic logic gates, and are expected to be applied
to gene expression regulation, disease detection and treatment research. This section
introduces RNA sequence prediction, regulation of mRNA molecules, combination
of interfering RNA and nucleic acid aptamers, and combination of gene editing
techniques.

11.3 Related Research on RNA Computing in Logic Gates and Logic Circuits 289

11.3.1 Prediction and Design of RNA Molecular Structure

In RNA computing, studying RNA molecular structures is crucial. Currently,
experimental techniques mainly involve X-ray crystallography, nuclear magnetic
resonance spectroscopy, and cryo-electron microscopy, which have verified numer-
ous RNA 3D shapes [4, 5]. But for RNAs with longer sequences or complex
structures, these methods are often time-consuming and labor-intensive [6], result-
ing in the known number of RNA 3D structures being far fewer than that of RNA
sequences. By 2023, the Protein Data Bank (PDB) [7] had archived 188,726 protein
3D structures, among which only 1732 were unique RNA 3D structures, merely
about 1%. of the total. Meanwhile, the number of RNA sequences in the RNA
Central Database [8] had reached 34 million during the same period.

The methods for RNA structure prediction have evolved from early approaches
that sought to maximize base pairing and were based on thermodynamic stability,
to utilizing multiple sequence alignments in bioinformatics, as well as homology
modeling predictions using known RNA sequences as templates. In recent years,
deep learning methods have also been applied to the prediction of RNA three-
dimensional structures. Following the remarkable success of AlphaFold 2 in protein
structure prediction, similar models like trRosettaRNA and ARES have also been
proposed [9, 10]. Judging from the international competitions for RNA three-
dimensional structure prediction, namely RNA-Puzzles and CASP-RNA (Critical
Assessment of Structure Prediction—RNA) [11, 12], the existing prediction models
can generally be categorized into physics-based models [13, 14], knowledge-based
fragment assembly [15, 16], and deep learning-based models [9, 10, 17, 18].

In practice, in order to exert the characteristics and functions of RNA molecules,
it is usually necessary to fold them into specific three-dimensional structures. As
early as 1998, Zhang et al. first redesigned the prohead RNA (pRNA) derived
from the Φ .29 bacteriophage packaging motor and assembled it into polymeric
RNA nanoparticles through hand-in-hand interactions, as shown in Fig. 11.3 [19].
Subsequently, Shu et al. invented a self-annealing technique in 2004, creating
pRNA nanoparticles using palindromic sequences [20]. Subsequent research has
successively proven that pRNA molecules can serve as multivalent carriers to
deliver various functional molecules including aptamers, siRNA, ribozymes, and
microRNA [21–25] [see Fig. 11.3b]. Currently, the modification of RNA molecules
and the design of RNA nanoparticles have become an important research field in
modern science [26], providing new research and treatment approaches for the
computing and medical fields.

11.3.2 RNA Computing Based on Molecular Automata

In the traditional biological “central dogma”, mRNA serves as the information
bridge from DNA to protein, playing a crucial role in gene expression. Detecting

290 11 RNA Computing

C U G A

G A C U A C C C C A U A C

U
A
A
C
U
G

A A C G G U A C

5'

(a)

5'..

3'..

5'..

3'..

5'..
3'..

5'..

3'..

5'.
.

3'.
.

5'.
.

3'
..

reporter

drugs aptamer

endosome

 disruptuon
ribozyme

 b siRNA

Fig. 11.3 Schematic diagram of pRNA structure and function. (a) Secondary structure of wild-
type pRNA containing 120 bases, (b) Secondary structure of pRNA hexamer, and schematic
diagram of carrying various components as a carrier

mRNA copy numbers and modulating the stability of mRNA molecules are
fundamental strategies for treating gene-related diseases. In 2001, Benenson et al.
proposed a finite-state molecular automaton model, which laid the groundwork for
this approach [27]. This automaton consists of only two states, S0 and S1, and an
alphabet comprising two letters, a and b, with eight possible transition rules. Both
the states and letters are represented by DNA oligonucleotide sequences. The DNA
chain used in the study (approximately 300 bp) has the following basic structure:

5'
.-spacer-enzyme cutting site sequence-spacer-state a+state b-spacer-stop state

sequence-spacer-3'
.

After the plasmid (pBlueScript II SK(+)) is cut by an enzyme, this sequence
is obtained by PCR amplification. The model employs the nucleic acid endonu-
clease Fok I as the hardware molecule of the molecular automaton. This enzyme
specifically recognizes the sequence 5'

.-GGATG and cuts the DNA double strand at
the 9th base on the downstream strand and at the 13th base on the complementary
strand. After a series of operations including input, hybridization, enzyme cutting,
and detection, its state transition is completed.

Building on the aforementioned research, the Shapiro research group focused on
the post-transcriptional regulatory role of mRNA molecules in genetic information
and proposed a molecular automaton model for the logical regulation of gene
expression in 2004 [28], thereby linking biological computation with disease
detection or treatment. This model primarily consists of three programmable
modules: a computing module, an input module, and an output module. The core
computing module utilizes nucleic acid endonucleases as hardware molecules (e.g.,
Fok I), with a DNA double strand containing the endonuclease recognition site, a
spacer sequence, and sticky ends serving as the software molecule, and a specific
DNA sequence as the state and alphabet set. Initially, the input molecule reacts
with the hardware-software complex to form a hardware-software-input complex.
Subsequently, the hardware molecule performs actions according to predefined
rules. After a series of computational steps, the output consists of DNA molecules in
either a “yes” or “no” state. This enables the model to automatically detect specific
mRNA concentrations in the test tube based on the programmed logical rules and

11.3 Related Research on RNA Computing in Logic Gates and Logic Circuits 291

Fig. 11.4 Logical design and
operation of molecular
automata. (a) Function and
module structure of molecular
automata. (b) State transition
diagram of the diagnostic
automaton. (c) Computational
steps for diagnosing prostate
cancer

to generate molecules that inhibit gene expression (or release drugs) according to
the detection results. This approach can be applied as antisense therapy in gene
treatment (see Fig. 11.4).

The research group also conducted related in vitro experiments to simulate the
feasibility of integrating molecular automata with disease detection and treatment
for genes associated with small cell lung cancer and prostate cancer models [29]. For
instance, in this study, the expression of prostate cancer-related genes is represented
by the following symbolic rules:

PPAP2B ↓.GSTP1 ↓.PIM1 ↑.HPN ↑.

For each symbol, the automaton has three transitions: positive (Yes →.Yes),
negative (Yes →.No), and neutral (No →.No) (see Fig. 11.4b). Figure 11.4c
illustrates the computational steps of the automaton processing this rule. If the
computation result is “positive”, it indicates that the genes PPAP2B and GSTP1 are
underexpressed, while the genes PIM1 and HPN are overexpressed. Consequently,
the automaton further outputs therapeutic molecules for prostate cancer, such as the
ssDNA molecule GTTGGTATTGCACAT.

11.3.3 RNA Computing Combined with RNA Interference
Technology (RNAi)

RNA interference (RNAi) technology is one of the key methods for modulating
mRNA expression. Among its components, small interfering RNA (siRNA), which
plays a pivotal role in the RNAi process, is a small RNA molecule found in
organisms, typically 20–25 nucleotides in length. siRNA guides the RNA-induced
silencing complex (RISC) to recognize and degrade target mRNA molecules,
thereby silencing specific genes. In 2007, the Benenson research group integrated
biological computation with siRNA technology, leveraging the regulatory influence
of untranslated regions on downstream gene transcription and the linear tandem

292 11 RNA Computing

UTR 1

mRNA1

(a)

Yellow output protein
UTR 2

mRNA2

mRNA1 mRNA2 OR

False False -

True False +

False True +

True True +

Yellow output protein

(b)

Target-A

A

B
siRNA-B

siRNA-A

Target-B

A1 B AND

False False -

True False -

False True -

True True +

si
R

N
A

-N
O

T
(A

)

(c)

T
arg

et-N
O

T
(A

)

Yellow

output protein

A Output NOT(A)

False + True

True - False

A

Fig. 11.5 Schematic diagram of siRNA-related logic gates. (a) OR gate, (b) AND gate, (c) NOT
gate

arrangement of vector sequences. They constructed basic logic gates such as AND,
OR, and NOT, with the optical signals generated by fluorescent proteins serving as
the output after logical operations [30]. Below is a brief introduction to the basic
logic gates developed in this study.

(1) OR gate: As shown in Fig. 11.5a, the fluorescent protein gene is connected
in series with the mRNA1 and mRNA2 genes. As long as either mRNA1 or
mRNA2 is normally transcribed and expressed, a recognition signal (fluorescent
protein output) will be generated, thereby establishing an OR relationship.

(2) AND gate: As shown in Fig. 11.5b, the fluorescent protein gene, target-A, and
target-B sequences are arranged in series. siRNA-A and siRNA-B can target
and affect target-A and target-B, respectively. These effects can be suppressed
by two endogenous substances, A and B. Therefore, only when both A and B are
present simultaneously can the RNAi effect be completely inhibited, allowing
the fluorescent protein gene to be expressed normally. In this way, A and B
establish an AND relationship.

(3) NOT gate: As shown in Fig. 11.5c, if the endogenous substance A activates
siRNA-NOT(A), then upon the addition of A, the resulting siRNA-NOT(A)
will inhibit the expression of target-NOT(A). This inhibition directly leads to
a reduction in the fluorescent protein product.

Based on the principles of the logic gates designed above, as long as the
relationships between endogenous substances A, B, C, E and their corresponding
siRNAs are predetermined, the molecular automaton can automatically perform
logical judgments based on the linear arrangement of genes and output the final
results when A, B, C, E, etc., are present in the system. These simple logic gates can
be combined to achieve complex logical operations, such as (A AND C AND E)

11.3 Related Research on RNA Computing in Logic Gates and Logic Circuits 293

or (NOT (A) AND B). The research group validated these logic gates in artificially
cultured kidney cells and proposed a multi-layer logic gate construction strategy.
This strategy involves regulating primary protein products first, which then control
the expression of secondary fluorescent protein genes.

Another class of small non-coding RNAs, approximately 22 nucleotides in
length, known as microRNAs (miRNAs), also plays a crucial role in the RNAi
process. miRNAs regulate gene expression by complementary pairing with the 3'

.

untranslated regions (3'
. UTRs) of their target mRNA molecules, leading to the

degradation or translational repression of these mRNAs. Moreover, the expression
of miRNAs undergoes significant changes in certain diseases, such as cancer,
making them valuable diagnostic biomarkers in clinical medicine. In 2017, Xing et
al. utilized an improved hairpin stacking circuit (HSC) technology to design logical
computation models (AND, INHIBIT) for the precise detection of specific miRNAs,
such as miR-21 and miR-155 [31]. Concurrently, AND and OR gates for detecting
input miRNA molecules were proposed. These gates leverage the activation of
luminescent states in organic small molecules, facilitating the cascading of basic
logic gates into more complex logic circuits [32]. Subsequently, by integrating gold
nanoparticle self-assembly, hybridization chain reaction (HCR), and DNA strand
displacement technologies, logic gates for detecting cancer-related miRNAs (e.g.,
miR-21, miR-200c, and miR-605) were successively developed [33–35].

In addition, by fully leveraging the information processing mechanisms inherent
in the regulation of gene expression within organisms, and integrating the con-
tinuous development of new technologies and methods in molecular biology and
related fields, researchers aim to construct complex biological circuits based on
fundamental logic gates. This represents one of the primary research directions in
RNA-mediated biological computation.

11.3.4 RNA Computation Combining Ribozyme and Aptamers
Technology

Ribozymes are RNA molecules with catalytic activity, capable of catalyzing specific
biochemical reactions (such as RNA cleavage, ligation, or modification). Aptamers
are special single-stranded DNA or RNA molecules that can bind to specific target
molecules (such as proteins, small molecules, or metal ions) with high affinity and
specificity. These aptamers are typically obtained from random nucleotide sequence
libraries using the Systematic Evolution of Ligands by Exponential Enrichment
(SELEX) technology [36, 37]. In 2008, Christina et al. utilized the ability of
hammerhead ribozymes (HHRzs) to cleave substrate RNA at specific positions (see
Fig. 11.6a) to construct an RNA-based computational device for processing intracel-
lular information [38]. This study emphasized the modular design, scalability, and
integration concepts in RNA computation. The device consists of three components:
a sensor module composed of RNA aptamers, an activator module composed of

294 11 RNA Computing

mRNA

ORF

Cleavage site

HHRz

AAAAAA
3’ UTP

(a) (b)

gene of interest
transmitter

AAAAA
...

sensor

actuator

Fig. 11.6 Schematic diagram of the hammerhead ribozyme RNA computing device. (a) The
function of the hammerhead ribozyme (HHRzs). (b) The functional combination framework for
assembling RNA devices from modular components

hammerhead ribozymes, and an emitter module formed by coupling parts of their
sequences. When the sensor module is present as input, the activated RNA device
binds to the 3'

.UTR of the target gene, and the ribozyme self-cleaves to inactivate the
transcript, thereby reducing gene expression, as illustrated in Fig. 11.6b. Fluorescent
RNA aptamers can bind to small dye molecules, stabilizing them from a flexible,
rotating state into a rigid, planar conformation, resulting in intense fluorescence.
This represents a novel technology for labeling and imaging RNA in live cells.
In 2017, Khalid et al. employed fluorescent RNA aptamer technology to design
a split-Broccoli aptamer system, implementing an AND logic gate for detecting
RNA-related events within cells [39].

11.3.5 RNA Computation Combining CRISPR/Cas Gene
Editing Technology

With the further development of gene editing technology, the novel RNA-protein
interaction system—CRISPR/Cas system—has garnered widespread attention. This
system, an acquired immune mechanism found in bacteria and archaea, consists of
clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-
associated (Cas) proteins. It can recognize and cleave exogenous viral or plasmid
nucleic acids, thereby protecting against the invasion of foreign genetic material
[40]. Taking the CRISPR/Cas9 system as an example, its fundamental mechanism
is as follows: First, the CRISPR sequence, as the recognition component, is
transcribed into precursor crRNA (pre-crRNA). The pre-crRNA is then processed
into mature crRNA, which possesses target recognition capability. The cleavage
component, Cas9, is a nucleic acid endonuclease that forms an RNA-protein
complex with the mature crRNA. As the crRNA specifically recognizes and binds
to a target DNA sequence, Cas cleaves the DNA strand, creating a break in the
gene. Finally, gene repair is achieved through homology-directed repair (HDR)
or non-homologous end joining (NHEJ), accomplishing the goal of gene editing.
Currently, the widely used CRISPR/Cas9 system recognizes double-stranded DNA
(dsDNA), while the CRISPR/Cas12a system recognizes both dsDNA and single-
stranded DNA (ssDNA) and exhibits non-specific collateral cleavage activity

11.3 Related Research on RNA Computing in Logic Gates and Logic Circuits 295

against ssDNA. The CRISPR/Cas13a system targets single-stranded RNA (ssRNA),
and the CRISPR/Cas14a system exclusively recognizes ssDNA. Except for the
CRISPR/Cas9 system, all other systems exhibit collateral cleavage activity, albeit
with different substrates.

The novel RNA-protein interaction system, such as CRISPR/Cas, can be directly
mapped to logic switches. It has not only garnered significant attention in DNA logic
gate research but has also become a focal point in the field of RNA computing.
In 2019, Breanna et al. investigated several specific endoribonucleases derived
from the CRISPR/Cas13 and CRISPR/Cas6 systems as effectors for RNA cleavage
regulation. They selected nine endoribonucleases with the highest orthogonality
for RNA activation (ON switches) and repression (OFF switches). This study
successfully designed complex circuits, such as feedforward loops, single-node
positive feedback and inhibition, and bistable switches. It also highlighted that such
switches, with appropriate modifications, can be adapted to various RNA cleavage
effectors, including endonucleases, miRNAs, and nucleases [41].

Kawasaki et al. developed the CARTRIDGE (Cas-Responsive Translational
Regulation Integratable into Diverse Gene Control) method, which repurposes Cas
proteins as translation repressors and activators in mammalian cells. This approach
first constructs a translation OFF switch responsive to Cas proteins by inserting
small guide RNA (sgRNA) into the 5'

. untranslated region (UTR) of mRNA. Sub-
sequently, it utilizes the nonsense-mediated mRNA degradation (NMD) pathway to
recognize and degrade mRNAs containing premature termination codons (PTCs)
within the open reading frame (ORF), thereby controlling mRNA degradation and
converting the OFF switch into an ON switch responsive to Cas proteins [42].

Taking the AND gate as an example, Andreth et al. constructed a plasmid
containing Cas A (PspCas13b) and Cas B (SaCas9). When both are present, an
intermediate plasmid (AkCas12b) is produced. This plasmid is transfected into
human embryonic kidney cells (HEK-293FT), inducing the expression of the pro-
apoptotic protein hBax, thereby triggering cell apoptosis, as shown in Fig. 11.7.
The study further designed 24 different orthogonal regulators (13 OFF and 11 ON
for each switch) and demonstrated the construction of translational logic gates and
complex logic circuits using 60 different combinations of Cas proteins.

Cas C AAAA

Cas C AAAA

hBax AAAA

Apoptosis

Input Cas A

Input Cas B

Mediator
Cas C

hBax

Fig. 11.7 Schematic diagram of the apoptosis AND gate and its truth table [42]. Kawasaki, S.,
Ono, H., Hirosawa, M. et al. Programmable mammalian translational modulators by CRISPR-
associated proteins. Nat Commun 14, 2243 (2023). https://doi.org/10.1038/s41467-023-37540-7.
(a) Apoptosis AND gate. (b) Truth table

https://doi.org/10.1038/s41467-023-37540-7
https://doi.org/10.1038/s41467-023-37540-7
https://doi.org/10.1038/s41467-023-37540-7
https://doi.org/10.1038/s41467-023-37540-7
https://doi.org/10.1038/s41467-023-37540-7
https://doi.org/10.1038/s41467-023-37540-7
https://doi.org/10.1038/s41467-023-37540-7
https://doi.org/10.1038/s41467-023-37540-7
https://doi.org/10.1038/s41467-023-37540-7

296 11 RNA Computing

The target recognition of the CRISPR/Cas system strictly follows the Watson-
Crick base pairing principle, enabling effective coupling with functional nucleic
acids and significantly expanding the system’s application scope. This has made it a
major research focus in interdisciplinary fields in recent years [43]. However, since
this area of research involves multiple technical disciplines and is not confined to the
field of RNA computing, the related research progress will not be further elaborated
in this book.

11.3.6 RNA Computing Combined with Synthetic Biology
Techniques

In 2000, researchers such as Gardner and Elowitz utilized genetic components
to create a “bistable gene switch”, “biological oscillator”, and “logic circuit” in
E. coli, marking the birth of synthetic biology [44, 45]. Their research concepts
and ideas have mutually informed and complemented biological computing. In
2012, Ausländer et al. employed transcription switches to receive and process input
signals (erythromycin and phloroglucinol) to implement highly complex circuits.
These input signals utilized RNA-binding proteins (RBPs), L7Ae and MS2CP, as
inhibitors of downstream translational switches [46]. Specifically, the L7Ae protein
recognizes and binds to specific structures (e.g., K-turn) in RNA molecules, thereby
influencing RNA structure and function. MS2 is a functional RNA-binding protein
that can establish specific binding sites on mRNA. Both are essential tools widely
used in molecular biology and synthetic biology. In 2015, Wroblewska et al. also
leveraged these two RNA-binding proteins (MS2-CNOT7 and L7Ae) to achieve
cross-inhibition, enabling bidirectional signaling pathways and feedback regulation
[47].

During this period, Peng Yin et al. first proposed the concept of ribocomputing
[48]. In 2017, by integrating synthetic biology regulatory elements, they utilized
Small Transcription Activating RNAs (STARs) and “toehold switch” technology to
construct multiple AND, OR, and NOT logic gates, enabling devices to sense and
compute complex signals in living cells, as demonstrated in E. coli. Figure 11.8
illustrates the schematic design of ribocomputing. The device uses RNA molecules
as input signals and proteins as output signals; signal processing is mediated by gate-
controlled RNAs within co-localized sensing and output modules. Input molecules
and gate-controlled RNAs self-assemble to form AND, OR, and NOT logic gates.
When the trigger RNA binds to the complementary region on the toehold switch,
the ribosome binding site (RBS) and start codon (typically AUG) of the toehold
switch RNA are exposed, thereby activating translation. The optimized toehold
switch retains a weak hairpin structure when activated by the trigger RNA, allowing
binding to a second signal. When both signals are present, efficient ribosome
translation is enabled, completing the AND gate logic operation. This study
designed a nucleic acid computing system entirely from RNA molecules, offering

11.3 Related Research on RNA Computing in Logic Gates and Logic Circuits 297

Input RNA network

Gate RNA: co-localized sensing and output Sensor modules

...

Input

signals

Signal processing

Output signals

Switch RNA

Gene

OFF

X*

RBS

AUG

Trigger RNA

X

Gene

ON

X*

X

Ribosome

Fig. 11.8 Schematic diagram of synthetic ribocomputing devices for in vivo computation

predictability and designability. It not only reduces signal loss caused by diffusion
but also enhances circuit reliability and lowers metabolic costs. Following this work,
Matsuura et al. constructed an RNA-based logic circuit in 2018, comprising five
2-input logic gates and one 3-input AND gate, which uses RNA-binding proteins
(RBPs) to detect multiple miRNA inputs in mammalian cells and regulate output
protein expression [49].

From RNA computing for the “Knight’s Problem” to in vitro molecular automata,
and further extending to the construction of logic gate operations and com-
plex circuits within cells, the representative works discussed above highlight that
research in RNA computing within the field of biological computing is closely
centered on the unique characteristics of RNA molecules and the latest theories
and technologies from related disciplines. The research focus has transitioned from
initially solving complex NP-complete problems to integrating the principles of
biological computing with the mechanisms of information storage and processing in
biological organisms. This integration aims to design novel logic operation methods
and achieve logical regulation and processing of intracellular information. As of
the completion of this book, the field of RNA computing has become a deeply
interdisciplinary research area, combining life sciences, computer and information
science, and nanotechnology materials science. It is poised to play an unprecedented
and significant role in disease diagnosis and treatment, precision medicine, and
information science.

298 11 RNA Computing

References

1. Adleman, L.M.: Molecular computation of solutions to combinatorial problems. Science
266(11), 1021–1024 (1994).

2. Faulhammer, D., Cukras, A.R., Lipton, R.J., et al.: Molecular computation: RNA solutions to
chess problems. Proceedings of the National Academy of Sciences 97(4), 1385–1389 (2000).

3. Crick, F.: Central dogma of molecular biology. Nature 227, 561–563 (1970).
4. Kavita, K., Breaker, R.R.: Discovering riboswitches: The past and the future. Trends in

Biochemical Sciences 48, 119–141 (2023).
5. Rose, P.W., Prlić, A., Altunkaya, A., et al.: The RCSB Protein Data Bank: Integrative view

of protein, gene and 3D structural information. Nucleic Acids Research 45(D1), D271-D281
(2017).

6. Schlick, T., Pyle, A.M.: Opportunities and challenges in RNA structural modeling and design.
Biophysical Journal 113, 225–234 (2017).

7. Berman, H. M., Westbrook, J., Feng, Z., etal.: The Protein Data Bank. Nucleic acids Research
28(1), 235–242 (2000)

8. RNAcentral Consortium: RNAcentral 2021: Secondary structure integration, improved
sequence search and new member databases. Nucleic Acids Research 49(D1), D212-D220
(2021).

9. Wang, W., Feng, C., Han, R., et al.: trRosettaRNA: Automated prediction of RNA 3D structure
with transformer network. Nature Communications 14, 7266 (2023).

10. Townshend, R.J.L., Eismann, S., Watkins, A.M., et al.: Geometric deep learning of RNA
structure. Science 373(6558), 1047–1051 (2021).

11. Cruz, J.A., Blanchet, M.F., Boniecki, M., et al.: RNA-Puzzles: A CASP-like evaluation of RNA
three-dimensional structure prediction. RNA 18, 610–625 (2012).

12. Kryshtafovych, A., Antczak, M., Szachniuk, M., et al.: New prediction categories in CASP15.
Proteins 91, 1550–1557 (2023).

13. Malhotra, A., Tan, R., Harvey, S.: Modeling large RNAs and ribonucleoprotein particles using
molecular mechanics techniques. Biophysical Journal 66, 1777–1795 (1994).

14. Wang, X., Tan, Y., Yu, S., et al.: Predicting 3D structures and stabilities for complex RNA
pseudoknots in ion solutions. Biophysical Journal 122, 1503–1516 (2023).

15. Parisien, M., Major, F.: The MC-Fold and MC-Sym pipeline infers RNA structure from
sequence data. Nature 452, 51–55 (2008).

16. Zhou, L., Wang, X., Yu, S., et al.: FebRNA: An automated fragment-ensemble-based model
for building RNA 3D structures. Biophysical Journal 121, 3381–3392 (2022).

17. Shen, T., Hu, Z., Peng, Z., et al.: E2Efold-3D: End-to-end deep learning method for accurate
de novo RNA 3D structure prediction. arXiv 2207, 01586 (2022).

18. Sha, C., Wang, J., Dokholyan, N.V.: Predicting 3D RNA structure from solely the nucleotide
sequence using Euclidean distance neural networks. Biophysical Journal 122, 444A (2023).

19. Zhang, F., Lemieux, S., Wu, X., et al.: Function of hexameric RNA in packaging of
bacteriophage Φ .29 DNA in vitro. Molecular Cell 2, 141–147 (1998).

20. Shu, D., Moll, W.D., Deng, Z., et al.: Bottom-up assembly of RNA arrays and superstructures
as potential parts in nanotechnology. Nano Letters 4, 1717–1723 (2004).

21. Guo, S., Tschammer, N., Mohammed, S., et al.: Specific delivery of therapeutic RNAs to cancer
cells via the dimerization mechanism of phi29 motor pRNA. Human Gene Therapy 16, 1097–
1109 (2005).

22. Shu, Y., Cinier, M., Shu, D., et al.: Assembly of multifunctional phi29 pRNA nanoparticles
for specific delivery of siRNA and other therapeutics to targeted cells. Methods 54, 204–214
(2011).

23. Haque, F., Shu, D., Shu, Y., et al.: Ultrastable synergistic tetravalent RNA nanoparticles for
targeting to cancers. Nano Today 7, 245–257 (2012).

24. Ye, X., Hemida, M., Zhang, H., et al.: Current advances in Phi29 pRNA biology and its
application in drug delivery. Wiley Interdisciplinary Reviews: RNA 3, 469–481 (2012).

References 299

25. Qiu, M., Khisamutdinov, E., Zhao, Z., et al.: RNA nanotechnology for computer design and in
vivo computation. Philosophical Transactions of the Royal Society A: Mathematical, Physical,
and Engineering Sciences 371(2000), 20120310 (2013).

26. Jasinski, D., Haque, F., Binzel, D.W., et al.: Advancement of the emerging field of RNA
nanotechnology. ACS Nano 11(2), 1142–1164 (2017).

27. Benenson, Y., Paz-Elizur, T., Adar, R., et al.: Programmable and autonomous computing
machine made of biomolecules. Nature 414, 430–434 (2001).

28. Benenson, Y., Shapiro, E.: Molecular computing machines. In Dekker Encyclopedia of
Nanoscience and Nanotechnology, James, A.S., Cristian, C., Karol, P., Eds.; Marcel Dekker,
Inc.: New York, 2004: 2043–2056.

29. Benenson, Y., Gil, B., Ben-Dor, U., et al.: An autonomous molecular computer for logical
control of gene expression. Nature 429, 423–429 (2004).

30. Rinaudo, K., Bleris, L., Maddamsetti, R., et al.: A universal RNAi-based logic evaluator that
operates in mammalian cells. Nature Biotechnology 25(7), 795–801 (2007).

31. Xing, Y., Li, X., Yuan, T., et al.: Engineering high-performance hairpin stacking circuits for
logic gate operation and highly sensitive biosensing assay of microRNA. Analyst 142(24),
4834–4842 (2017).

32. Morihiro, K., Ankenbruck, N., Lukasak, B., et al.: Small molecule release and activation
through DNA computing. Journal of the American Chemical Society 139(39), 13909–13915
(2017).

33. Yu, S., Wang, Y., Jiang, L., et al.: Cascade amplification mediated in situ hot-spot assembly for
microRNA detection and molecular logic gate operations. Analytical Chemistry 90(7), 4544–
4551 (2018).

34. Ma, X., Gao, L., Tang, Y., et al.: Gold nanoparticles-based DNA logic gate for miRNA inputs
analysis coupling strand displacement reaction and hybridization chain reaction. Particle and
Particle Systems Characterization 35(2), 1700326 (2018).

35. Ran, X., Wang, Z., Ju, E., et al.: An intelligent 1:2 demultiplexer as an intracellular theranostic
device based on DNA/Ag clusters gated nanovehicles. Nanotechnology 29(6), 065501 (2018).

36. Ellington, A.D., Szostak, J.W.: In vitro selection of RNA molecules that bind specific ligands.
Nature 346(6287), 818–822 (1990).

37. Doug, I., Craig, T., Larry, G., et al.: Selexion: Systematic evolution of ligands by exponential
enrichment with integrated optimization by non-linear analysis. Journal of Molecular Biology
222(3), 739–761 (1991).

38. Maung, N.W., Christina, D.S.: Higher-order cellular information processing with synthetic
RNA devices. Science 322(5900), 456–460 (2008).

39. Khalid, K.A., Kwaku, D.T., Matthew, F.L., et al.: A fluorescent split aptamer for visualizing
RNA-RNA assembly in vivo. ACS Synthetic Biology 6(9), 1710–1721 (2017).

40. Deltcheva, E., Chylinski, K., Sharma, C.M., et al.: CRISPR RNA maturation by trans-encoded
small RNA and host factor RNase III. Nature 471(7340), 602–607 (2011).

41. Breanna, D.A., Noreen, W., Eileen, H., et al.: PERSIST: A programmable RNA regulation
platform using CRISPR endoRNases. bioRxiv, 12.15.867150 (2019).

42. Kawasaki, S., Ono, H., Hirosawa, M., et al.: Programmable mammalian translational modula-
tors by CRISPR-associated proteins. Nature Communications 14(1), 2243 (2023).

43. Chen, S., Gong, B., Zhu, C., et al.: Nucleic acid-assisted CRISPR-Cas systems for advanced
biosensing and bioimaging. TrAC Trends in Analytical Chemistry 159, 116931 (2023).

44. Gardner, T., Cantor, C., Collins, J.: Construction of a genetic toggle switch in Escherichia coli.
Nature 403, 339–342 (2000).

45. Elowitz, M.B., Liebler, S.: A synthetic oscillatory network of transcriptional regulators. Nature
403(1), 335–338 (2000).

46. Ausländer, S., Ausländer, D., Müller, M., et al.: Programmable single-cell mammalian
biocomputers. Nature 487(7405), 123–127 (2012).

47. Wroblewska, L., Kitada, T., Endo, K., et al.: Mammalian synthetic circuits with RNA binding
proteins delivered by RNA. Nature Biotechnology 33, 839–841 (2015).

300 11 RNA Computing

48. Green, A.A., Kim, J., Ma, D., et al.: Complex cellular logic computation using ribocomputing
devices. Nature 548, 117–121 (2017).

49. Matsuura, S., Ono, H., Kawasaki, S., et al.: Synthetic RNA-based logic computation in
mammalian cells. Nature Communications 9, 4847 (2018).

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Chapter 12
Protein Computing

Feynman’s vision of “developing computers at the molecular scale” led to the birth
of the DNA computing model in 1994, followed by protein computing in 1995:
a protein computing model of 2-state logic gates was proposed. Since then, many
scholars have studied numerous protein logic gates, logic calculators, arithmetic
calculators, protein computing models for solving NP-complete problems, protein
storage and computing devices, etc. This chapter introduces some typical represen-
tatives.

12.1 Introduction

Proteins have a myriad of structures and can perform a variety of functions in
the body, making them natural high-performance biomaterials. Any protein that
can transform input signals into output signals can be considered an element that
performs some computation or carries some information [1]. Since the early 1990s,
people have begun to explore the use of proteins to store information, and in recent
years, the exploration of using different proteins to build memristors. Nicolau et al.
explored the solution of NP-complete problems by protein computing in 2016 [2],
using protein molecules (actin and tubulin) to solve a specific mathematical problem
(subset sum problem). Most of the work on protein computing focuses on exploring
the construction of logic calculators and arithmetic calculators with proteins. This
chapter will introduce in detail from four aspects: building logic calculators based
on proteins, building arithmetic calculators based on proteins, solving NP-complete
problems based on protein molecules, and protein storage.

© The Author(s) 2025
J. Xu, Biological Computing, https://doi.org/10.1007/978-981-96-3870-3_12

301

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-96-3870-3protect T1	extunderscore 12&domain=pdf
https://doi.org/10.1007/978-981-96-3870-3_12
https://doi.org/10.1007/978-981-96-3870-3_12
https://doi.org/10.1007/978-981-96-3870-3_12
https://doi.org/10.1007/978-981-96-3870-3_12
https://doi.org/10.1007/978-981-96-3870-3_12
https://doi.org/10.1007/978-981-96-3870-3_12
https://doi.org/10.1007/978-981-96-3870-3_12
https://doi.org/10.1007/978-981-96-3870-3_12
https://doi.org/10.1007/978-981-96-3870-3_12
https://doi.org/10.1007/978-981-96-3870-3_12
https://doi.org/10.1007/978-981-96-3870-3_12

302 12 Protein Computing

12.2 Building Logic Calculators Based on Proteins

Logic gates are a fundamental component of computers. In electronic Boolean logic
gates, low voltage/current corresponds to 0, and high voltage/current corresponds
to 1. This concept can be extended to biochemical reactions, where low concen-
tration/activity is 0, and high concentration/activity is 1. Although the inputs and
outputs of molecular logic gates are not truly binary, molecular circuits can be
designed to approximate binary logic gates, responding to inputs in an S-shaped
response [3]. Protein-based logic calculators are usually constructed using enzyme-
mediated reactions [3, 4], protein interactions [5, 6], protein conformational effects
[7, 8], post-translational modifications of proteins [9], and proteins designed and
modified artificially [5, 6, 9, 10], among which the most studied are enzyme-
mediated logic calculators. These are introduced below.

12.2.1 Enzyme-Mediated Logic Calculators

In the process of constructing a protein logic calculation system, the design and
implementation of enzyme-based logic gates have become a focus of attention.
Firstly, enzymes exhibit excellent specificity and selectivity, making them more
reliable and accurate in biological computing tasks due to their recognition of spe-
cific substrates. Secondly, as biological catalysts, enzymes can efficiently catalyze
biochemical reactions, executing specific logic operations more quickly. Moreover,
enzymes are naturally occurring molecules in the body, unlikely to cause immune
reactions, which helps to realize biological computing in the body. In addition,
the activity of enzymes can be precisely controlled by adjusting factors such as
pH and temperature, providing convenience for the design of adjustable biological
computing systems. Enzymes also have the ability to self-assemble, interacting
with other molecules or nanomaterials, providing the possibility to construct more
complex biological computing devices [11]. Enzyme-based logic gates usually use
relatively simple enzyme-catalyzed reactions for implementation, which are more
intuitive in design. The rapid development of enzyme-based information processing
systems has promoted the design of various Boolean logic gates, including AND,
OR, NAND, NOR, CNOT, XOR, INHIBIT, YES, NOT, etc. Researchers have also
designed various cascade reactions to simulate combinations of different logic gates
[12].

12.2.1.1 General Definition of Enzyme-Based Logic Calculators

Biochemical reactions are not binary processes in their essence, so to simulate
binary computing, especially the implementation of Boolean logic gates, special
processing methods need to be adopted to perform binary operations. Low and

12.2 Building Logic Calculators Based on Proteins 303

high concentrations of chemicals can be correspondingly defined as 0 and 1. When
there are no reactants in the system, it is usually considered as the logical 0 of
the input signal. In experiments, the high concentration corresponding to logic 1
can vary depending on the type of reaction and the method used to analyze the
resulting chemical changes. In some specific application scenarios, such as in the use
of biomedical/biosensors, the low concentration of initial reagents corresponding
to logic values 0 and 1 can be set to high concentration for natural reasons.
For example, logic 0 and 1 inputs can be defined as the normal physiological
concentration and abnormal pathological concentration of reactant species. In
this case, the gap between logical inputs 0 and 1 may be small, resulting in
relatively small differences in output signals, increasing the complexity of binary
discrimination.

In addition to the substrate concentration of the enzyme as input 0 or 1 [13],
the presence or absence of the enzyme can also serve as input 0 or 1 [12, 14].
When the substrate is used as input, the entire reaction system can use binary
variable low molecular weight substances (substrates, cofactors), biological catalyst
species (enzymes), and some auxiliary reagents (starters, salts, buffers, etc.) as the
“mechanical” part of the logic gate. The definition of logical input and mechanical
part can change, and enzymes can also serve as logically variable inputs, while other
reactants are considered as non-variable “mechanical” parts.

12.2.1.2 Enzyme-Based Boolean Logic Gates

By choosing different combinations of enzymes and reaction types, different logic
gates can be realized. Simple Boolean logic gates process one or two inputs to
produce one output. Common simple logic gates include: YES, NOT, OR, NOR,
XOR, NXOR, AND, NAND, INHIBIT. Different enzymes can simulate the same
logic operation, and the following introduces the above 9 simple logic gates
implemented by enzyme-catalyzed reactions.

YES Gate

The YES gate is the simplest logic gate, with a single input and output. When
the input is logic 0, the output is logic 0; when the input is logic 1, the output is
logic 1. The biochemical reaction implementation is also the simplest, any chemical
reaction that produces a chemical product in the presence of the corresponding
original substrate can be considered a YES gate. Many different enzyme-catalyzed
reactions have been reported to simulate this simple logic operation [15]. As shown
in Fig. 12.1, in the presence of lactate (Lac), lactate dehydrogenase (LDH) catalyzes
the reduction of NAD+ to NADH, which is a simple YES gate. NADH has the
best absorbance at λ.=340 nm, and NAD+ has weak absorbance at λ.= 340 nm, so
by detecting whether the absorbance at λ.= 340 nm increases, it can be determined
whether NADH is produced [13, 16]. When Lac is present (input is 1), NADH

304 12 Protein Computing

Fig. 12.1 Schematic diagram
of the YES gate. (a) The YES
gate based on enzyme
catalytic reactions. (b) The
scheme of the YES gate. (c)
Truth table of Boolean YES
gate

Fig. 12.2 Schematic diagram
of the NOT gate. (a) The
NOT gate based on enzyme
catalytic reactions. (b) The
scheme of the NOT gate. (c)
Truth table of Boolean NOT
gate

is produced, causing an increase in absorbance at λ.= 340 nm. When the increase
in absorbance exceeds a certain threshold, it is defined as output signal 1. In the
absence of Lac (input is 0), the reaction cannot proceed, the original NAD+ has a
small absorbance at λ.= 340 nm and does not change, which is defined as output
signal 0. This YES gate simulation process uses a standard biological analysis
method and is simple to operate. Although the YES gate is relatively simple, it
is used in complex logic systems (such as the logically reversible Feynman, Double
Feynman, Toffoli, Peres, and Fredkin gates play an important role in them [12], and
they are also indispensable components in biological computing systems.

NOT Gate

The NOT gate is similar to the YES gate, both are single-input and single-output, but
have a reverse output signal. When the input is logic 0, the output is logic 1; when the
input is logic 1, the output is logic 0. The NOT gate can be realized through various
enzyme-catalyzed reactions [12, 13]. As shown in Fig. 12.2, in the presence of
hydrogen peroxide (H 2 .O 2 .), Nicotinamide Adenine Dinucleotide Phosphate Oxidase
2 (NADH-POx) oxidizes NADH to NAD+. In the presence of H 2 .O 2 . (input is
1), NADH decreases, and the absorbance at λ.= 340 nm decreases, defining this
absorbance change as 0; in the absence of H 2 .O 2 . (input is 0), the reaction does
not occur, NADH remains unchanged, and the absorbance at λ.= 340 nm remains
unchanged, defining it as output 1, this process is similar to the logical function
NOT. Although the NOT gate is simple, it is a very important part of various
biological computing systems, for example, it operates as an inverter in a half
subtractor [11, 13].

12.2 Building Logic Calculators Based on Proteins 305

Fig. 12.3 Schematic diagram
of the OR gate. (a) The OR
gate based on enzyme
catalytic reactions. (b) The
scheme of the OR gate. (c)
Truth table of Boolean OR
gate

OR Gate

The OR gate is a logic gate with dual inputs and single output. When at least
one input is 1, the output is 1; when both inputs are 0, the output is 0. Its design
implementation is relatively easy, and can be realized by two biological catalytic
reactions that generate the same chemical product. Figure 12.3 shows two biological
catalytic reactions that generate NADH, one catalytic reaction produces NADH
through Glucose Dehydrogenase (GDH), and the other produces NADH through
Lactate Dehydrogenase (LDH), by detecting the change in absorbance at λ.= 340 nm
to detect the output signal. When Glc (input A) and Lac (input B) at least one
reducing substrate is present (input is: 1, 0; 0, 1; 1, 1), NADH can be generated,
causing an increase in absorbance (output is 1). When Glc and Lac are both absent
(input is 0, 0), the reaction does not occur, the concentration of NADH remains
unchanged, and the absorbance remains unchanged (output is 0). Because the
implementation of the OR gate is simple, the enzyme-based OR logic gate is one of
the most frequently reported logic systems, with a wide range of applications.

NOR Gate

The NOR gate is basically the same as the OR gate, with dual inputs and single
output, but has a reverse output signal. When both inputs are 0, the output is 1;
when at least one input is 1, the output is 0. This logic gate can be constructed
when both input reagents inhibit the same biological catalytic reaction. Although
the design of the NOR gate is feasible, it is relatively difficult to implement. If
the generation of a substance is defined as output 1 like the OR gate, in addition
to the two normal catalytic reactions, two additional inhibitors (inputs) need to be
added to realize the NOR gate, and the reaction is very complex. Therefore, defining
the consumption of a substance as output 0, the implementation of the NOR gate
will be simpler. Figure 12.4 shows two biological catalytic reactions that consume
NADPH. NADPH is similar to NADH, with the best absorbance at λ.= 340 nm, and
NADP+ has weak absorbance at λ.= 340 nm. The reaction catalyzed by Glutathione
Reductase (GR) starts in the presence of oxidized glutathione (GSSG) (input A is
1), causing NADPH to oxidize, the concentration of NADPH decreases, and the
absorbance at λ.= 340 nm decreases (output is 0). The second reaction is catalyzed

306 12 Protein Computing

Fig. 12.4 Schematic diagram
of the NOR gate. (a) The
NOR gate based on enzyme
catalytic reactions. (b) The
scheme of the NOR gate. (c)
Truth table of Boolean NOR
gate

by Diaphorase (Diaph), in the presence of [Fe(CN) 6 .]3 −. (input B is 1), the same
output result is obtained. Therefore, when at least one input reagent is present
(input is: 0, 1; 1, 0; 1, 1), the absorbance decreases (output is 0); and when both
input reagents are absent (input is: 0, 0), the absorbance remains at the original high
value (output is 1). The current design of the NOR gate makes it easy to integrate
into complex logic networks, such as multiplexers, and applications in biological
sensor alarm devices. In addition, Chuang pointed out that the NOR logic gate is a
universal gate, which can be used to construct logic circuits that perform all other
logic operations [17].

XOR Gate

The XOR gate is one of the key elements in designing complex logic systems
(such as reversible logic gates and arithmetic operations). When the two inputs are
inconsistent (inputs are 1, 0 or 0, 1), the XOR gate outputs 1; when the two inputs are
consistent (inputs are 0, 0 or 1, 1), the XOR gate outputs 0. The XOR gate has been
implemented using many different enzymes [13, 18–20], but implementing it in a
biocatalytic system presents certain challenges, usually requiring the introduction
of an “artificial” assumption—that is, the output signal usually needs to use the
absolute value of the generated signal. By carrying out both product multiplication
and product reduction biocatalytic reactions, the implementation of the XOR gate
becomes possible. Figure 12.5 shows an example of an XOR gate at work, using
the absolute value of the change in absorbance as the output signal. NADH-POx
causes NADH oxidation in the presence of H 2 .O 2 . (input A), reducing NADH and
lowering the absorbance at λ.= 340 nm. LDH causes NAD+ reduction in the presence
of Lac (input B), generating NADH and increasing the absorbance at λ.= 340 nm. In
the absence of both H 2 .O 2 . and Lac (inputs are 0, 0), the light absorbance remains
unchanged (output 0). The presence of either H 2 .O 2 .or Lac (inputs are: 1, 0; 0, 1) will
activate one of the reactions, respectively reducing or increasing the concentration of
NADH and its absorbance. Although the changes in concentration and absorbance
are different (opposite), if the absolute value of the change in absorbance is defined
as the output signal, these two results can be considered as the same output 1.
For XOR logic operations, it is crucial to produce a low response to the two
inputs (inputs are 1, 1) (output 0). It is necessary to optimize the concentrations

12.2 Building Logic Calculators Based on Proteins 307

Fig. 12.5 Schematic diagram
of the XOR gate. (a) The
XOR gate based on enzyme
catalytic reactions. (b) The
scheme of the XOR gate. (c)
Truth table of Boolean XOR
gate

of the two inputs to ensure that the rates of NADH consumption and generation
are consistent, thus keeping the concentration of NADH and its absorbance almost
unchanged. The method of using “artificial” definition of absolute value change
as the output signal has advantages and disadvantages. The advantage is that it
makes the implementation of the XOR gate relatively simple, the disadvantage is
that the XOR gate has some limitations in connecting logic gate networks. The
absolute value change can be used as the final signal produced by logic gates
connected by cascading reactions, but because two different chemicals (such as
NAD+ and NADH) cannot participate in a reaction in the same way, this gate cannot
be extended to other logic operations.

NXOR Gate

The NXOR gate is similar to the XOR gate, but has a reverse output signal [21].
When the two inputs are inconsistent (inputs are 1, 0 or 1, 0), the NXOR gate outputs
0; when the two inputs are consistent (inputs are 0, 0 or 1, 1), the NXOR gate outputs
1. However, individual inputs (inputs are 0, 1 and 1, 0) inhibit the biocatalytic
process, resulting in a low output signal of logical value 0. Figure 12.6 provides
a possible method for implementing this process. Horseradish peroxidase (HRP)
catalyzes the oxidation of the substrate 2,2’-azino-bis(3-ethylbenzothiazoline-6-
sulfonic acid) (ABTS), generating the oxidized state of ABTS (ABTSox), which
has the best absorbance at λ.= 420 nm, so the change in absorbance at λ.= 420 nm is
used as the output signal. This reaction is continuous, and HRP maintains optimal
activity at a specific pH value. The esterase-catalyzed hydrolysis of Et-O-Ac (input
A) to produce CH 3 .COOH and the urease-catalyzed hydrolysis of urea (input B) to
produce NH 3·.H 2 .O can regulate the pH of the solution. When both Et-O-Ac and
urea are absent (inputs are 0, 0), or when the amounts of Et-O-Ac and urea are
comparable (inputs are 1, 1), the produced CH 3 .COOH and NH 3·.H 2 .O neutralize
each other, and the pH of the solution does not fluctuate significantly, maintaining
the optimal activity of HRP, and ABTSox continues to be produced, increasing the
absorbance at λ.= 420 nm (output is 1). However, when the concentrations of Et-
O-Ac and urea differ significantly (inputs are 1, 0 or 0, 1), the pH changes, HRP

308 12 Protein Computing

Fig. 12.6 Schematic diagram of the NXOR gate. (a) The NXOR gate based on enzyme catalytic
reactions. (b) The scheme of the NXOR gate. (c) Truth table of Boolean NXOR gate

activity decreases, ABTSox production decreases, and the absorbance at λ.= 420 nm
is low (output is 0). Enzymes whose activity depends on pH can be used to design
similar NOXR gates, and the optimal activity pH is best near neutral pH, so that the
pH can move in both directions.

AND Gate

The AND gate is one of the most commonly designed logic gates, especially
those implemented through enzymatic reactions. When both inputs are 1 (inputs
are 1, 1), the AND gate outputs 1; in other cases (inputs are 0, 1; 1, 0; 0, 0),
the AND gate outputs 0. AND gates are usually designed as a cascade of two
consecutive biocatalytic processes, and Fig. 12.7 is an AND gate composed of a
cascade reaction. Lac (input A) is catalyzed by lactic acid oxidase (LOx) to produce
H 2 .O 2 .. H 2 .O 2 .oxidizes ABTS (input B) to produce ABTSox, which serves as the final
output signal. Only when both inputs Lac and ABTS are present (inputs are 1, 1), the
cascade reaction can be completed at once, producing ABTSox and increasing the
absorbance at λ.= 420 nm (output is 1). The number of biocatalytic reactions and the
number of enzymes involved may vary, all of which can be used to construct AND

Fig. 12.7 Schematic diagram
of the AND gate. (a) The
AND gate based on enzyme
catalytic reactions. (b) The
scheme of the AND gate. (c)
Truth table of Boolean AND
gate

12.2 Building Logic Calculators Based on Proteins 309

Fig. 12.8 Schematic diagram
of the NAND gate. (a) The
NAND gate based on enzyme
catalytic reactions. (b) The
scheme of the NAND gate.
(c) Truth table of Boolean
NAND gate

gates. In the simplest implementation of AND logic, the two substrates of a single
enzyme represent two input signals [14]. Enzyme-based logic AND gates have been
widely used in various biosensing systems.

NAND Gate

The NAND gate is similar to the AND gate, but the output signal is reversed. When
both inputs are 1 (input is 1,1), the AND gate outputs 0; in other cases (input is 0,1;
1,0; 0,0), the AND gate outputs 1. In specific biological catalytic reactions, reversal
can be achieved through logical operations [22]. The simplest method is to change
the definition of the output signal, taking the consumption of chemical molecules
(concentration decrease) as output signal 1. Figure 12.8 shows the cascade process
of two enzymes catalyzed by two different input signals. Under the catalysis of
glutamate transaminase (ALT), glutamate (Glue, input A) and alanine (Ala, input
B) are respectively transformed into α .-ketoglutarate (α .-KTG) and pyruvate (Pyr).
This reaction only starts when both Glu and Ala inputs are present (input is 1,1),
similar to the AND logic gate. When Pyr is generated in the first step of the reaction,
it is reduced to Lac in the LDH catalytic process, causing NADH to be oxidized to
NAD+, and the absorbance at λ.= 340 nm decreases (output is 0). When the input
reactants are missing (input is 0,1; 1,0; 0,0), the intermediate product Pyr cannot
be produced, the subsequent reaction cannot start, the amount of NADH does not
change, and the absorbance does not decrease (output is 1).

INHIB Gate

The INHIB gate is a special logic gate, where one input can inhibit the logic
operation when it is 1. As shown in Fig. 12.9, when input A is 0, the output of the
INHIB gate is determined by input B, which is equivalent to a YES gate based on
input B; when input A is 1, no matter what input B is, the output of the INHIB
gate is 0, that is, when input A is 1, the logic operation of the INHIB gate is
inhibited and can only output 0. In the example in Fig. 12.9, acetylcholinesterase
catalyzes the hydrolysis of acetylcholine (input B), generating choline and acetic

310 12 Protein Computing

Fig. 12.9 Schematic diagram of the INHIB gate. (a) The INHIB gate based on enzyme catalytic
reactions. (b) The scheme of the INHIB gate. (c) Truth table of Boolean INHIB gate

acid. Subsequently, choline is oxidized in the reaction catalyzed by choline oxidase,
simultaneously producing H 2 .O 2 .. H 2 .O 2 . oxidizes ABTS in the reaction catalyzed by
horseradish peroxidase (HRP), generating ABTSox as the output signal. However,
pralidoxime (PAX) (input B) inhibits the hydrolysis of acetylcholine, preventing the
subsequent reaction from continuing. When PAX is absent (input A is 0), and there
is no acetylcholine (input B is 0), the entire biocatalytic cascade reaction is in a
silent state, unable to produce ABTSox (output is 0); when acetylcholine is present
(input B is 1), the reaction occurs in succession, generating ABTSox (output is 1).
When PAX is present (input A is 1), it inhibits this series of reactions, and does not
generate ABTSox (output is 0). The INHIB logic gate built on the inhibitory effect
of PAX can be implemented in the biocatalytic cascade, without directly inhibiting
the enzyme, but still performing the same logic function [13].

12.2.1.3 Enzyme-Based Logic Circuits

Enzyme-based logic gates are realized through enzymatic catalysis. By designing
specific interactions between enzymes and substrates, the cascading of enzyme-
based logic gates can be achieved, forming complex logic circuits. As shown in
Fig. 12.10, Tamara et al. assembled OR, AND, XOR three logic gates by combining
acetylcholinesterase (AChE), choline oxidase (ChOx), microperoxidase-11 (MP-
11), glucose dehydrogenase (GDH) four enzymes and acetylcholine, butyrylcholine,
oxygen, glucose four substrates, and cascaded into a logic circuit, with the change
in absorbance of NADH at λ.= 340 nm as the output signal [23]. Acetylcholine
(input A) or butyrylcholine (input B) is hydrolyzed under the catalysis of AChE,
and betaine aldehyde is reduced to choline, forming an OR gate. Choline and
oxygen (input C) generate betaine aldehyde and H 2 .O 2 . under the catalysis of ChOx,
forming an AND gate. When H 2 .O 2 . is present, NADH is oxidized to NAD+ under
the catalysis of MP-11, NADH decreases, and the absorbance decreases (output
is 1); on the other hand, when glucose (input D) is present, NAD+ is reduced to
NADH under the catalysis of GDH, NADH increases, and the absorbance increases

12.2 Building Logic Calculators Based on Proteins 311

Fig. 12.10 Logic circuit composed of four enzymes in series. (a) The Logic circuit based on
enzyme catalytic reactions. (b) The scheme of the Logic circuit

(output is 1); when H 2 .O 2 . and glucose are either both absent or both present, the
amount of NADH does not change, and the output is 0; forming an XOR gate.
The output of one logic gate serves as the input of the next logic gate, realizing
the cascading of logic gates and constructing complex logic circuits. To ensure that
the logic circuit reacts according to the design, the concentration of the enzyme and
substrate needs to be balanced. To achieve this, many optimization experiments have
been conducted on the concentration of enzymes and input substrates.

However, cascading enzyme-based logic gates may have the following problems:
Signal transmission delay: Each logic gate’s catalytic reaction requires a certain

amount of time to complete. When multiple logic gates are cascaded, the output
of each gate will become the input of the next gate, leading to signal transmission
delay. This may be unacceptable in some applications, especially for systems that
require a quick response. Signal Attenuation: Long-term cascading may lead to
signal attenuation. Since each logic gate’s response introduces some noise and loss,
these effects may accumulate during transmission, affecting the system’s stability
and accuracy.

Mutual Influence There may be mutual influence between cascaded logic gates.
The output substance may affect the catalytic reaction of the next logic gate,
thereby changing the behavior of the entire system. This requires careful design
and optimization to ensure that the output of each logic gate does not adversely
affect the input of the next logic gate.

Substrate Depletion When cascading multiple logic gates, substrate depletion
may become a problem. If the substrate of a logic gate is the reactant of the next
logic gate, then the decrease in substrate concentration may affect the performance
of the entire system.

Despite these issues, researchers have successfully implemented cascaded
enzyme-based logic gates through careful design and adjustment of reaction
conditions. These systems may play an important role in the fields of biological
computation and biosensors, but they need to be carefully designed and optimized
in specific applications.

312 12 Protein Computing

12.2.2 Non-enzyme Mediated Logic Operators

Non-enzyme mediated logic operators can be divided into types such as receptor-
ligand interactions, conformational effects, and post-translational modifications,
depending on the mechanism and process by which proteins perform functions [1].

12.2.2.1 Receptor-Ligand Interactions

Receptor-ligand interactions are an important type of molecular interaction in
biology, usually involving specific binding between proteins (receptors) and ligands.
This interaction can trigger intracellular cascade reactions, thereby affecting the
physiological functions and behaviors of cells. It plays a key role in biological pro-
cesses such as cell signal transduction, immune response, hormone regulation, and
is crucial for the perception and response to the internal and external environment
of cells.

Similar to enzyme-based protein logic computation, receptor-ligand interactions
can also be viewed as a signal processing process, where receptor proteins read the
concentration or specific features of ligands and generate corresponding intracellu-
lar signals. This signal processing process is similar to the input-output relationship
in computation, so the mechanism of receptor-ligand interactions can also be used
to design logic gates.

Ronde and others defined ligand concentration as input and receptor protein
activity as output, realizing 16 types of logic gates [24]. Receptors usually exist in
the form of dimers or higher polymers, and most logic gates can be realized by two
single-ligand receptors or one double-ligand receptor. Smita and others designed
an antibody logic gate that combines phosphorylation. The 104th residue of the
complementary region (CDRs) of the single-domain antibody cAb-Lys3 is the key
residue for binding to the antigen lysozyme. Phosphorylating the 104th residue can
only be dephosphorylated in the presence of a phosphatase, binding to the antigen,
realizing an AND logic gate, which can control the immune response [25]. Simone
and others used antigen-antibody interactions, targeting the CD52 and CD20 cell
surface proteins of tumor B cells, introduced mutations G236R and G237A on
the antibody IgG, and when CD52 and CD20 were recognized at the same time,
hetero-oligomers would form, enhancing the affinity with protein C1q and Fc γ .R,
executing effector functions: cell lysis and inflammatory response, cytotoxicity and
cell phagocytosis, etc., also realizing an AND logic gate [26].

Processes similar to receptor-ligand interactions also include protein-protein
interactions. Tae believes that the transcription process is an AND gate. When
the transcription factor and its partner protein are present at the same time (input
signal: 1,1), a protein can be expressed (output is 1). This protein can be the input
of the next AND gate, so it can be cascaded into a multi-input AND gate [27].
Y406A is a pore-forming protein that forms pores on the lipid membrane under
low pH conditions. The ankyrin repeat domain protein inhibitor (D22) also inhibits

12.2 Building Logic Calculators Based on Proteins 313

the function of Y406A when it binds to Y406A. D22 reversibly binds to Y406A.
D22 is cut on the membrane (dissociated from the membrane by TCEP or MMP-9
cutting on different lipid membrane systems), dissociates from Y406A, and Y406A
can form pores under the condition of simultaneously satisfying low pH. Based on
this principle, Omersa and others designed AND gates and OR gates [28].

12.2.2.2 Conformational Effects

Conformational effects refer to the process where the binding of a ligand to
a site on a protein changes the protein’s conformation, leading to a change
in the protein’s biological activity, thereby achieving corresponding functional
regulation [7]. Conformational effects play an important role in many biological
processes such as signal transduction, transcription regulation, and metabolism.
The conformational change of a protein can be regulated by external stimuli or
internal signals. This change can be seen as a computational process, that is, the
input signal (stimulus or signal) is transformed into a specific output response
(conformational change). Conformational effects can be used to implement logic
operations, signal transmission, and information processing, and thus can be applied
to protein computation [8].

Nikolay and others have found that nanocomputing devices (NCA) built with
single-chain proteins use individual proteins or protein structural domains as
response units (RU); inputs can be provided by many functional modulators, such
as light, drugs, PH, temperature, RNA sensitive functional modulators; protein
conformation changes or active site changes (binding ability changes) are used
as outputs [8]. In recent years, there have been many works using light-sensitive
structural domains (LOV) and drug-sensitive structural domains (uniRapR) to
regulate the binding activity of response units [6, 8–10, 29]. As shown in Fig. 12.11,
the light-sensitive modulator (LFM) receives light irradiation, causing disorderly
fluctuations in the active site of RU, inhibiting the binding activity of RU and
substrate (A); when the drug-sensitive modulator (DFM) binds with the drug
molecule rapamycin, it changes from disorder to order, promoting the binding of RU
and substrate (B); inserting a self-inhibitory structural domain (AID) on RU, AID
occupies the binding site of RU substrate, causing RU to not bind with the substrate.
LFM receives light irradiation, which will cause AID to dissociate, allowing RU
to successfully bind with the substrate (C). RU is split into N and C ends, each
connected to a part of the dimeric protein (iFKBP and FRB), in the presence of
rapamycin, iFKBP and FRB form a dimeric protein, and the N and C ends of RU also
bind together, forming a functional RU that can bind to the substrate (D). Through
the combination and modification of light-sensitive structural domains and drug-
sensitive structural domains, various logic gates, such as AND, OR, etc., can be
constructed to regulate protein conformation, thereby directly controlling functions.

314 12 Protein Computing

Fig. 12.11 Some of the established modes of protein control. (a) Photo-allosteric inhibition. (b)
Chemo-allosteric inhibition. (c) Photo-allosteric activation. (d) Controlling protein function via
split reassembly. This figure originally published by Dokholyan NV. Nanoscale programming of
cellular and physiological phenotypes: inorganic meets organic programming. NPJ Syst Biol Appl.
2021 Mar 11;7(1):15. https://doi.org/10.1038/s41540-021-00176-8; released under a [CC licence
type, eg. Creative Commons Attribution 4.0 International License (CC BY 4.0)]

12.2.2.3 Post-translational Modification

Post-translational modification refers to the modification of proteins after synthesis
through chemical methods, including phosphorylation, methylation, nucleotidy-
lation, acylation, etc. Post-translational modification can change the structure,
function or interaction of proteins, thereby affecting intracellular signal transduc-
tion, metabolic regulation and cell function [1]. This regulatory process can also be
used to construct logic gates. For example, the kinase DRP-1 is active only when
it forms a dimer, and can phosphorylate other monomers, and both monomers are
deactivated when phosphorylated [30]. Unger and others connected the kinase DRP-
1 monomer to a specific DNA chain, including two input DNA tags, one output
DNA tag, and initially the output tag was blocked by another complementary DNA
chain. This DRP-1 monomer constitutes a NAND gate, relying on the input DNA
tags on the gate, two monomers approach and form a dimer, phosphorylating the
gate (output is 1); but when both monomers are in a phosphorylated state (input
combination: 1, 1), the gate cannot be phosphorylated (output is 0). The formation of
two monomers into a dimer can activate the nuclease structural domain, hydrolyze
the blocking DNA chain, and allow the output gate to continue to participate
in the next level of reaction. Through the design combination of different DNA
tags, different scales of biomolecular logic circuits can be realized [30]. Smita and
others used the phosphate group to occupy the complementary determining region
(CDR) of the antibody to achieve antigen-antibody binding, and finally realized the
AND gate [25]. Post-translational modification regulates the function or interaction
of proteins by regulating the activity or structure of proteins, and can construct
different logic systems, which have broad application prospects in the fields of
biosensing, drug delivery and treatment, molecular computing, etc.

https://doi.org/10.1038/s41540-021-00176-8
https://doi.org/10.1038/s41540-021-00176-8
https://doi.org/10.1038/s41540-021-00176-8
https://doi.org/10.1038/s41540-021-00176-8
https://doi.org/10.1038/s41540-021-00176-8
https://doi.org/10.1038/s41540-021-00176-8
https://doi.org/10.1038/s41540-021-00176-8
https://doi.org/10.1038/s41540-021-00176-8
https://doi.org/10.1038/s41540-021-00176-8

12.3 Building Arithmetic Calculators Based on Proteins 315

12.2.3 Logic Calculators Based on Artificially Designed
Proteins

Although there are many types of natural proteins, which can perform diversified
tasks in protein computation, their functions and structures are aimed at specific
biological environments and biological processes, and cannot flexibly adapt to the
computational needs of artificial design, so in some cases, engineering modifications
and de novo design of proteins are needed to achieve new computational functions.
A common method is to modify the specific sites of proteins, such as inserting
specific sites on DNA according to computational needs, these sites can bind
with repressors, transcription factors and cofactors etc. to achieve the purpose
of regulating target gene expression [3, 31, 32]. In recent years, with the rapid
development of synthetic biology and protein engineering technology, research on
protein computation is no longer limited to the modification of natural proteins, but
can also design new proteins with specific structures and functions from scratch.
David The Baker research group has successfully combined various homodimeric
proteins, designed from scratch, into basic units of logic gates [5]. Different
protein monomers are combined into logic gates, and the inputs are corresponding
heterodimers, connected by linkers. This design makes it easier for the input protein
monomers to form homodimers with the protein monomers on the gate. In this
system, the input heterodimers can be considered as the input signals of the logic
gate. By combining the input signals, new homodimeric proteins can be formed to
construct different logic gates. The output can be reflected by measuring the size and
concentration of the new protein. Specifically, when the optical density (OD value)
of the protein is large enough, it can be considered as the output signal of the logic
gate is 1. This design not only provides a novel protein calculation method, but
also provides a feasible framework for the construction of biological logic gates.
Such protein modification and design methods have expanded our understanding
of protein engineering and provided more possibilities for customized biological
systems and molecular computing.

12.3 Building Arithmetic Calculators Based on Proteins

The cascading of simple protein-based logic gates can not only construct more
complex logic gates, such as Feynman, Double Feynman, Toffoli, Peres, Fredkin
and other reversible logic gates [14], but also can form half adders and half
subtractors [13]. Half adders and half subtractors are basic components in digital
circuits, used to perform addition or subtraction operations of two single-bit binary
numbers. A half adder requires an XOR gate and an AND gate in cascade, producing
two output results, namely the sum bit (Sum) and the carry bit (Carry); while a
half subtractor requires an XOR gate and an INHIB gate in cascade, producing
the difference bit (Difference) and the borrow bit (Borrow). Usually, enzymes have

316 12 Protein Computing

high selectivity for specific substrates, but sometimes unexpected substrate cross-
reactions occur, which may lead to unexpected products in the design of complex
enzyme cascade systems, thereby affecting the accuracy and controllability of the
computing system [11].

To solve the above problem, Brain and others used microfluidic chips to fix each
enzyme in their own flow pools separately, and then connected different flow pools
to form different logic gates, forming different output bits of half adders and half
subtractors [11]. The half adder is composed of two logic gates, but these two logic
gates are built separately, with the same input but no mutual influence. Diaphorase
(Diaph) reduces [Fe(CN) 6 .]3 −. to [Fe(CN) 6 .]4 −. in the presence of NADH (input
A is 1); Glucose oxidase (GOx) reduces O 2 . to H 2 .O 2 . in the presence of glucose
(Glc) (input B is 1); H 2 .O 2 . enters the next flow pool, and under the catalysis of
horseradish peroxidase (HRP), [Fe(CN) 6 .]4 −. is oxidized to [Fe(CN) 6 .]3 −. . The two
reactions in cascade form an XOR gate. [Fe(CN) 6 .]3 −. has the strongest absorbance at
λ.= 420 nm. Only when NADH is input (input signal: 1, 0), [Fe(CN) 6 .]3 −. decreases,
and the absorbance decreases (output is 1); only when Glc is input (input signal:
0, 1), [Fe(CN) 6 .]3 −. increases, and the absorbance increases (output is 1); when
neither or both are input (input signal: 0, 0; 1, 1), the concentration of [Fe(CN) 6 .]3 −.

remains unchanged, and the absorbance remains unchanged (output is 0). Lactate
dehydrogenase (LDH) oxidizes NADH to NAD+ in the presence of NADH (input
A is 1); NAD+ enters the next reaction pool, and glutamate dehydrogenase (GDH)
reduces NAD+ to NADH in the presence of Glc (input B is 1), and NADH enters the
next reaction pool, Diaphorase (Diaph) reduces [Fe(CN) 6 .]3 −. to [Fe(CN) 6 .]4 −. in the
presence of NADH. The three enzyme reactions in series form a complex AND gate.
Only when both NADH and Glc are present (input signal: 1, 1), can the reaction in
the last reaction pool occur, [Fe(CN) 6 .]3 −. decreases, and the absorbance decreases
(output is 1). The XOR gate and AND gate have consistent input signals, and the
reactions are separate, giving the sum bit and carry bit values separately, realizing
the half adder. The implementation of the half subtractor is similar to the half adder,
by cascading reaction pools, separately constructing XOR gate (difference bit) and
INHIB gate (borrow bit), to realize the half subtractor.

Multiple half adders or half subtractors can be combined into a full adder or
full subtractor to perform more complex arithmetic operations. However, enzymes
can also be used directly for addition, subtraction, and multiplication operations
[33]. Ivanov and others fixed enzymes on hydrogel beads and separated them
with a continuous stirred tank reactor (CSTR). According to different enzymes,
polypeptide chains are formulated as inputs. The polypeptide chains have specially
made cleavage sites that can be cut by specific enzymes. The other end of the
cleavage site is connected with a fluorescent substance (AMC). The polypeptide
chain enters the CSTR and reacts under the catalysis of the enzyme. AMC is cut off,
and the result output is reflected by measuring the fluorescence intensity of AMC.
The implementation of the adder is to fix two or more enzymes in a CSTR, input
the polypeptide chains corresponding to each enzyme for reaction at the same time,
detect the fluorescence intensity of AMC, and produce AMC fluorescence intensity
equal to the sum of the single fluorescence intensity produced by each enzyme

12.4 Solving NP-complete Problems Based on Protein Molecules 317

reaction. Subtraction is to fix two enzymes in two CSTRs respectively, then connect
them in series. The polypeptide chains corresponding to the two enzymes are the
same, carrying two enzyme cleavage sites. After the first CSTR, the polypeptide
chain is partially cut, and the uncut polypeptide chain continues to be input into
the second CSTR. The fluorescence intensity of the cut AMC is equivalent to the
fluorescence intensity of all inputs into the second CSTR minus the fluorescence
intensity of the first CSTR. The implementation of multiplication is to fix two
enzymes in a CSTR, and then design a polypeptide chain with two cleavage sites.
Only when it is cut by two enzymes at the same time can free AMC be generated. By
adding two enzyme inhibitors, the activity of the two enzymes can be regulated, and
the final AMC fluorescence intensity is equal to the product of the activities of the
two enzymes. This research cannot directly observe the results through the output, it
needs to measure the activity of a single enzyme in advance, and also strictly control
the consistency of the substrate concentration.

The half adder, half subtractor, and arithmetic operation device built based on the
split pool pave the way for arithmetic calculations using enzymes, but at the same
time, complex experimental operations also limit its expansion and application. The
design of enzyme-based cascade systems needs to carefully consider the specificity
of enzymes and the cross-reactivity between substrates to ensure the accuracy and
reliability of the system.

12.4 Solving NP-complete Problems Based on Protein
Molecules

Actin and tubulin proteins are important components of the cytoskeleton and
participate in cell transport functions. They obtain energy through ATP hydrolysis
and can move quickly along the cell skeleton (actin or tubulin) under the drive of
actin coagulation protein and driving protein. Actin and tubulin proteins have the
characteristics of low price, spontaneous propulsion, independent operation without
mutual influence, small size, fast movement speed, and unidirectional movement,
which can be used for protein calculation.

Nicolau and others proposed a method to solve the subset sum problem using
actin and tubulin proteins [2]. The subset sum problem is a classic NP-complete
problem. Its goal is to determine whether there is a subset in a given set whose sum
of elements equals a given target value. More specifically, for a set S containing
N integers = s1, s2, . . . , sN and a target sum T, the subset sum problem requires
determining whether there is a subset whose sum of elements equals T. Nicolau
and others set the set to 2,5,9. In order to find all the subset sums of this set,
they first used electron beam lithography to etch the network on a silicon dioxide
substrate according to the following rules. According to the numbers in the set, 3
batches of intersections are etched in turn, etching 2, 5, and 9 rows respectively; the
first row of each batch etches a splitting intersection, and the remaining rows etch

318 12 Protein Computing

through intersections; all rows of intersections do not divide batches, the first row
etches one intersection, and each subsequent row increases one intersection; except
for the one intersection in the first row that only has one input channel and two
output channels, other nodes all have two input channels and two output channels;
channels are etched between the output and input channels of the intersections of
adjacent two rows to connect them; the total output of the last row is all possible
results 0–16. The splitting intersection is a node that can move in two directions,
and the through intersection is a node that can only go straight. Actin and tubulin
proteins are injected into the upper left corner of the network, and a buffer solution
containing ATP is provided at the same time. Actin and tubulin proteins will move
quickly in the network under the drive of actin coagulation protein and driving
protein, and only come out from the correct result. The action path of the protein
can be obtained through fluorescence microscopy, and the correct subset sum result
can be obtained.

Nicolau [34] believes that if specific NP-complete problems can be graphically
represented, then these problems can be transformed into the design of physical
networks, such as the design of channels, nodes, entrances, and exits, and other
microfluidic structures. By encoding the computational network of the NP-complete
problem of interest, the problem is solved in parallel by the random exploration
of a large number of independent computational substances. These computational
substances are non-biological and biological. In non-biological substances, laminar
flow fluids and micrometer-sized non-biological beads have been used to solve
NP-complete problems, but non-biological substances often have the limitation of
a shorter moving life. Biological substances used to explore the network include
cytoskeletal filaments (actin filaments or microtubules), prokaryotes (bacteria and
archaea), eukaryotes, etc., but only cytoskeletal filaments (actin filaments or micro-
tubules) have been experimentally verified.

12.5 Protein Storage

Traditional storage media are mainly based on silicon chips or magnetic materials,
but these methods have some limitations, such as limited storage density, high
power consumption, and susceptibility to magnetic fields and radiation interference.
To overcome these problems, researchers have begun to explore new storage
technologies, one of which is protein storage technology. Protein storage technology
originates from the study of bacteriorhodopsin, which is photosensitive. When
excited by light of a specific wavelength, it undergoes structural changes and
maintains a stable state, making it one of the candidate materials for storing and
reading data. With the emergence of the emerging non-volatile memory resistors,
recent research on protein storage has focused on protein-based memory resistors,
such as silk protein, ferritin, and egg protein, which are introduced below.

12.5 Protein Storage 319

Fig. 12.12 The BR light
cycle includes the ground
state (bR) and intermediate
states K, L, M, N, and O

12.5.1 Protein Storage Based on Bacteriorhodopsin

Bacteriorhodopsin (BR) is a protein found in the cell membrane of halophilic
bacteria, belonging to the G-protein coupled receptor (GCPR) family, composed
of seven alpha helices. BR can pump protons out of the membrane under light
drive, this unique photoelectric response characteristic makes it one of the biological
materials with great application potential [35]. As shown in Fig. 12.12, when BR
is exposed to light, it undergoes structural changes in a certain order, such as the
ground state (bR) and intermediate states K, L, M, N, O [36]. When excited by
green light, the BR molecule is excited from the ground state to the K state, and
relaxes back to the O state. If the BR molecule receives red light excitation higher
than the O state energy, it will convert to the P state, and then gradually decay to the
long-lived intermediate state Q (>.5 years). Using the two different states of bR and
Q during the structural change process can be used to represent digital information
0 and 1. The Kock Center for Molecular Electronics in the United States has made a
model of this storage system, which is a transparent container, 1x1x2 inches in size,
filled with polyacrylamide gel, and BR is placed in it, forming a three-dimensional
data array. When the protein is not excited, it is in the bR state and is fixed in a
certain place by the polymerization with the gel. Around the container, there is a
set of krypton lasers and charge injection devices (CID) displayed for reading and
writing data [37].

To write data, first use a “page” laser beam to excite the protein molecules,
making them go from the bR state to the O state. By controlling the page laser beam,
it can only excite a two-dimensional plane of the material in the container, and this
excited plane in the O state can write data. This process is called “paging”, and this
page can store 4096 × 4096. bits of data. After paging, you must complete the write
data operation with a red “write data” laser beam before the material returns from
the O state to the bR state. The protein molecules storing data 1 are irradiated by the
write laser beam, and they further transition from the O state to the Q state, while
the protein molecules storing data 0 are not irradiated by the write data laser beam,
and quickly return from the O state to the bR state. Using the write data device, the
data to be written can be written into the protein storage in pages.

To read data, first use a page laser beam to excite the target page into the O state.
The purpose of doing this is to further enlarge the difference in absorption spectrum
between the bR and Q states, making the read data less confusing. Then use the
read laser beam and the charge injection device CID array to represent (read) the
data of the target page in the form of an image. To erase a page of data, you can use
a short-pulse blue laser beam to irradiate the page, causing the Q state molecules

320 12 Protein Computing

to return to the bR state. If you want to erase all the data in the container, you can
expose the container under an incandescent lamp with ultraviolet output. To ensure
data accuracy, two additional parity bits can be used to correct errors during read
and write operations.

BR protein has been used in some preliminary applications in the field of infor-
mation storage. Compared with semiconductor storage technology, protein storage
technology has many advantages: very fast data access speed, large storage capacity,
stable and reliable operation, stable data preservation, can be mass-produced using
genetic engineering, and is cheap. Although BR has these advantages in the field
of protein storage, there are still challenges and limitations. For example, better
control and optimization of the writing and reading process are needed to improve
the stability and reliability of data. In addition, technical problems related to
material preparation, integrated optical systems, and data decoding need to be solved
to realize the commercialization and feasibility of bacteriorhodopsin in practical
applications.

12.5.2 Protein-Based Memory Resistors

Memristor (also known as resistive memory) is the fourth type of passive electronic
component after resistors, capacitors, and inductors. It is an emerging non-volatile
memory and is considered an ideal alternative to traditional memory. It shows
great application potential in fields such as artificial intelligence, neuromorphic
computing, and high-density data storage [38]. A typical memristor has a metal-
insulator-metal (MIM) structure, including two electrodes and an active layer. The
active layer is the main functional layer of the memristor. Various materials have
been developed as active components of memristors, including binary and multivari-
ate oxides, organic polymer materials, and sulfur compounds [39]. However, these
materials may produce non-degradable and toxic electronic waste during production
and after disposal, causing environmental problems. Protein materials, due to their
good biocompatibility, controllable biodegradability, and remarkable mechanical
toughness, have attracted widespread attention and are considered ideal materials
for developing high-performance green flexible electronic components [40]. In
addition, protein-based memristors are truly biomaterials that can be used to create
biomimetic neural network electronic components. They have application prospects
in implantable computing and direct human-machine interaction and integration that
existing inorganic components cannot match.

The amino acid residues in protein materials have excellent ion binding ability,
which helps to form conductive filament paths under the action of an electric
field, making most proteins exhibit resistive switching characteristics. Silk protein,
ferritin, egg protein, and sericin protein have been confirmed to have typical resistive
switching characteristics through research, making them potentially valuable in the
field of data storage and arousing widespread research interest. Figure 12.13 is the
development history of protein-based memristors, which has gone through simple

12.5 Protein Storage 321

Fig. 12.13 Development history of protein-based memristors

tests of natural proteins, research on the optimization of protein-based memristors
by functional assembly, and exploration in the field of artificially designed recom-
binant proteins. Before formally introducing protein-based memristors, let’s first
introduce two important indicators for evaluating memristor performance: switch
ratio and retention time. The switch ratio (ON/OFF ratio) is the ratio of resistance
or current between the ON and OFF states of the memristor. The switch ratio is one
of the important indicators to measure the performance of the memristor. A higher
switch ratio means that the memristor can significantly change the resistance or
current value when switching states, which is crucial for accurately reading and
storing information. The retention time is the length of time that the memristor
can maintain a certain state after switching to that state. Retention time is also an
important indicator for evaluating memristor performance. It measures the stability
and durability of the memristor’s stored information. A longer retention time means
that the memristor can maintain the stored information for a longer time, while a
shorter retention time may lead to information loss or instability.

12.5.2.1 Ferritin Memristor

Ferritin is a major intracellular iron storage protein, a spherical metalloprotein with
a diameter of about 12 nm, composed of a shell about 2 nm thick and an iron storage
cavity with a diameter of about 8 nm. Ferritin has high stability and can maintain its
structure and function under a wide pH range (2.0–12.0) and high temperature (up
to 80 ◦ .C). This stability makes ferritin an ideal natural biomaterial. In addition, iron
ions can be released from the shell under the action of an electric field, which may
be the reason for the observable resistive switching effect [41].

In 2011, the Cho research group reported a memristor constructed using ferritin,
clarifying that the reversible resistance change in the ferritin nanoparticle film may
be caused by the charge capture/release of the Fe3+/Fe2+ redox pair, and proved
that ferritin nanoparticles can serve as nanoscale memory devices. This layer-by-
layer assembled protein multilayer device can be extended to biomimetic electronic
devices at the molecular level with adjustable memory performance [42]. The

322 12 Protein Computing

Chen research group also explored ferritin-based memristors, integrating ferritin
into precise nanogaps generated by chemical methods to achieve resistive memory
behavior, and explored the regulation of memory device performance by adjusting
iron content [41, 43]. This regulation process is attributed to the high redox activity
of the inorganic iron chelate core structure under the action of high concentration
iron. The greater the iron load, the better the memory performance. The high load of
iron leads to the release of more iron from the ferritin core, resulting in the transport
of iron (II) ions to the outside of the protein cage. Zhang and others constructed
a typical Pt/ferritin/Pt MIM structure memristor on a Si/SiO 2 . substrate, where the
protein film thickness reached 250 nm, the device’s turn-on voltage was 1.3 V, and
the turn-off voltage was −.0.4 V [44]. Since the electrode used is chemically inert
platinum, it is speculated that the conductive filament is composed of iron ions.

12.5.2.2 Silk Protein Memristor

Silk protein (Fibroin, also known as sericin protein) is a natural high-molecular-
weight fibrous protein extracted from silk, accounting for about 70–80% of silk. It
is composed of 18 amino acids, among which glycine, serine, and alanine account
for more than 80% of the total. The basic unit of silk protein consists of a heavy
chain, a light chain, and a glycoprotein P25. The heavy chain and the light chain are
connected by disulfide bonds, and then combined with glycoprotein P25 through
non-covalent interactions such as hydrophobic bonds. The heavy chain is the
main component of silk protein, containing N-terminal and C-terminal hydrophilic
structural domains, as well as 12 highly repetitive regions rich in Gly-Ala. The N-
terminal of the heavy chain is a significant two-layer entangled β .-fold structure
[45].

Silk protein has attracted much attention due to its excellent biocompatibility,
optical transparency, ultra-light weight, superior flexibility, and mechanical prop-
erties. At present, a large amount of research has been conducted on memory
resistors based on silk protein. In 2012, the Hota research group used silk protein
to construct a typical MIM structure memory resistor, observed bipolar memory
switching behavior for the first time, and confirmed that its switching mechanism is
due to the switching of conductive filaments under the ion effect [46]. In 2015,
the Chen research group at Nanyang Technological University first reported a
configurable memory resistor based on silk protein. This memory resistor also
uses a simple MIM structure, with gold (Au) as the bottom electrode and silver
(Ag) as the top electrode [47]. By controlling the compliance current during the
setting process, the resistance switching (RS) type of the device can be precisely
controlled. A higher compliance current (>100 μ.A) can trigger storage RS, while
a lower compliance current (<10 μ.A) can trigger threshold-type RS memory, with
a switching ratio of up to 107

. and a retention time of more than 4500 s. In 2016,
the research group used silk protein as both the active layer and the substrate,
with metal (Mg) as the upper and lower electrodes, and prepared a silk protein
(substrate)/Au/Mg/silk protein (switching layer)/Mg structure physical transient

12.5 Protein Storage 323

RRAM, showing reasonable bipolar memory characteristics, with a switching ratio
of 102

. and a retention time of more than 104
. [48]. These devices can be completely

dissolved in deionized water (DI) or phosphate-buffered saline (PBS, pH 7.4) within
2 hours, proving that the proposed transient storage devices based on silk protein
have great application potential in safe data storage systems, biocompatible and
implantable electronic devices. The structure of the ultra-light memory resistor
reported by the Chen research group later is silk protein (substrate)/Au/silk protein
(switching layer)/Ag, with a unit area mass of only 0.4 mg cm−2

., which is much
lighter than traditional silicon substrates or office paper, 320 times lighter than
traditional silicon substrates, 20 times lighter than office paper, can be maintained
by a single hair, with a switching ratio of 105

. and a retention time of about 104
.s

[49].
The Liu research group found that silk protein forms a nanocrystalline net-

work with a fishnet-like topological structure [38, 50], which is connected by
β .-microcrystalline phases formed by orderly arranged β .-fold structures within the
molecule. The unique mesoscopic network structure of silk protein gives it great
potential for application modification. By doping some functional elements (such
as nanometal clusters, quantum dots or conductive polymers), it can give silk
protein materials additional properties without affecting their original properties.
In 2013, the Gogurla team doped gold nanoparticles (Au) into silk protein. NPs)
are integrated into silk protein biopolymers, constructing a silk protein-based
memristor, and improving the switch (ON/OFF) ratio of working voltage and
current, with a switch ratio of up to 106

., and the on/off voltage concentrated at
2 V/ −.2 V [51]. This improvement is attributed to the synergistic effect of negatively
charged gold nanoparticles and positively charged oxidized silk proteins, enhancing
the conductive path in the switch layer. In 2019, the Liu research group used
bovine serum protein (BSA) as a carrier, doped silver nanoclusters into silk protein
materials, promoted the crystallization process of silk protein molecules, formed a
stable functional structure, realized the mesoscopic functionalization of silk protein
materials, and used it as a resistive material layer to construct a new type of silk
protein-based memristor [52]. Compared with the non-functionalized silk protein
memristor, the performance of the protein-based mesoscopic memristor signifi-
cantly improved after functionalization, the switching speed (≈.10 ns) significantly
increased, the switching stability was very good, with ultra-low switching voltage
(the on and off voltages fluctuated around 0.30 and −.0.18 V respectively), thus
greatly reducing power consumption. In addition to functional doping of metal
nanoclusters, other light-responsive functional materials, such as carbon dots, can
also be selected. Biocompatible carbon dots (cd) with small size, good optical
properties, and low production cost have become important materials in the field of
optoelectronics. The Han research group prepared a light-adjustable memristor by
doping carbon nanodots into a silk protein matrix. Taking different top electrodes
(Al, Au, and Ag) as examples, they systematically studied the characteristics of
the new structure memory device based on the metal top electrode/carbon dot-silk
protein/indium tin oxide (ITO), and found that carbon dots with light-adjustable

324 12 Protein Computing

charge capture ability play an important role in the light-adjustable resistance
switching characteristics of the memristor [53].

12.5.2.3 Egg Albumen Memristor

Egg albumen (EA) is a common and easily obtainable natural protein, with good
biocompatibility, biodegradability, flexibility, and low cost, widely used to construct
protein-based memristors. Egg albumen consists of about 10% proteins (such as
albumin, mucin, and globulin) and 90% water. Most of the proteins in egg albumen
are globular proteins, connected by many weak chemical bonds. During the process
of processing protein materials into thin films, that is, during the heat baking
process, weak bonds break, and the two main chemical bonds of protein molecules,
peptide bonds and disulfide bonds, cross-link. The formation of disulfide bonds is
an irreversible process (called coagulation), which is the reason for the generation
of heat-crosslinked solid protein films [54]. Egg albumen has a rich amino acid
composition, which includes polar groups such as hydroxyl, carboxyl, and amino
groups. These groups can change their charge state and molecular structure under
the action of an electric field, leading to resistance changes and realizing the
memristive effect. Egg albumen can be directly extracted from fresh eggs without
the need for additional chemical purification or extraction, reducing manufacturing
costs and method complexity.

In 2015, Chen et al. used egg protein directly obtained from fresh eggs to prepare
a typical ITO/egg protein/Al MIM structure memristor without any additional
purification or extraction. The device performed excellently, with a switching ratio
reaching 103

. and a retention time exceeding 104
.s, confirming that the formation and

rupture of conductive filaments were due to the electric field-induced migration of
oxygen ions and the electrochemical oxidation-reduction reaction of iron ions [55].
He et al. used egg protein as the active layer and water-soluble Mg and tungsten
(W) as the upper and lower electrodes to prepare a transient memristor device,
which has better reliability and stability, proving the possibility of information
storage in transient electronic devices and opening the door for the manufacture of
biocompatible, biodegradable electronic devices using cheap, abundant, and natural
bioelectronic application materials [54]. In 2017, Zhu et al. used Ag and ITO as the
upper and lower electrodes to construct a new type of egg protein-based memristor,
which has a long retention time (104

.s), a faster device erasure speed (75 ns),
and its switching voltage is also lower, respectively maintained at 0.6 V/ −.0.7 V
[56]. Subsequently, Yan’s team prepared a new type of memristor with a W/egg
protein/ITO/polyethylene terephthalate (PET) structure. The device works normally
under mechanical bending conditions, with no significant performance degradation,
demonstrating good flexible resistive storage performance. The device can also
achieve synaptic functions by adjusting the applied pulse voltage [57]. In 2019,
Zhou et al. made a super-flexible egg protein memristor array, achieving multi-
functional logic gates including “AND”, “OR” and “NOT” operations. It is worth
noting that both the active layer and the flexible substrate are made of egg protein

12.5 Protein Storage 325

through physical and chemical processing [58]. By simultaneously or independently
applying three separate signals (including two different electrical pulses and one
broadband light pulse) to the memristor, it is easy to switch logic states between the
three basic logic operations.

12.5.2.4 Other Protein-Based Memristors

In addition to these representative proteins, some other proteins are also used to
construct memristors, such as sericin, a by-product of silk protein, proteins extracted
from microorganisms, and artificially recombined proteins.

Sericin, as a by-product of silk processing, has also been proven to have excellent
memristive switching performance. Sericin is composed of 18 amino acids, most
of which have strong polar groups, such as hydroxyl, carboxyl, amino, etc., and
is a stable, non-easily oxidized, water-soluble, biodegradable material. Secondly,
sericin can form a uniform and dense film, which has insulating properties in its
natural state, suitable for manufacturing storage devices. Sericin is also an easily
obtainable abundant material, which is usually a by-product discarded during silk
processing, so its cost is also very low. In 2013, Chen’s team used sericin to construct
a memristor, with Ag and Au as the upper and lower electrodes, and its switching
ratio can reach 106

., with a retention time exceeding 103
.s [59]. By using different

limiting currents to realize multi-level storage of resistive memory through the
charge carrier capture/release mechanism, the research confirmed the feasibility of
natural material waste by-products in the field of data storage, but further research
is still needed to improve the stability of the device.

S-layer (surface layer, Slp) is a two-dimensional biomembrane structure formed
by the repeated arrangement of single-molecule proteins or glycoproteins, which
exists on the outermost layer of bacterial and archaeal cell walls, commonly found in
lactic acid bacteria, such as acidophilus, chicken lactobacillus, cheese lactobacillus,
brucella lactobacillus, bulgarian lactobacillus, kefir lactobacillus, and short lacto-
bacillus, etc. The molecular weight of S-layer protein is between 40–200 kDa, and
it has a highly porous and irregular lattice structure at the sub-nanometer level
(about 10 nm thick protein mesh structure), can recrystallize in vitro and fuse with
exogenous proteins, thus becoming a good candidate material for applications in
bionanotechnology and biomimetics. In 2018, Moudgil et al. first proposed a flexible
storage device constructed from S-layer protein (Al/S-layer protein/ITO/PET),
which can switch to low resistance state (LRS) and high resistance state (HRS) in
a bistable manner, has stable bistable memory performance, has a longer retention
time (>4 × 103

.s), can withstand 500 cycle tests, and the device can withstand more
than 100 bending resistive performance tests, meeting the expected applicability of
biocompatible wearable electronic devices [60].

Lee and others used heat-denatured protein hexa-His tagged recombinant molec-
ular chaperone protein DnaJ (rDnaJ) as an active layer to create a bio-memristor
[61]. The rDnaJ memristor demonstrated extremely low device turn-on voltage
(about 0.12 V) and reset voltage (about −.0.08 V), as well as a high switching ratio

326 12 Protein Computing

(>106
.) and a long performance retention time (>106

.s). The heat-denatured rDnaJ
protein layer between the metal electrodes can control the formation/breakage of
copper conductive filaments by adjusting the metal chelating ability of the amino
acid residues in the protein, achieving high-performance non-volatile resistive mem-
ory performance. This study uses recombinant proteins with engineered properties
as powerful building blocks to meet the requirements of next-generation biocom-
patible, flexible, high-performance, and low-power electronic products. However,
current research on how to regulate device performance through recombinant
proteins is very limited, mainly for the following reasons. First, recombinant DNA
technology is more often used in treatment and diagnosis, and how to apply this
advanced and complex technology to the field of data storage still requires more
in-depth interdisciplinary communication. Second, for some metal proteins, recom-
binant DNA technology may pose certain challenges in modifying their structure,
which also limits the scope and application of protein recombination regulation
device performance research. In addition, unexpected structural changes may occur
in the traditional device manufacturing process, which may cause changes in the
expected properties of recombinant proteins. Finally, a full understanding of the
relationship between hierarchical structure and device performance is crucial for
more advanced material and device design, and further research is needed to develop
design strategies from genetic engineering to target device functions [39].

References

1. Bray D.: Protein molecules as computational elements in living cells. Nature 376(6538), 307–
312 (1995).

2. Nicolau Jr D V, Lard M, Korten T, et al.: Parallel computation with molecular-motor-propelled
agents in nanofabricated networks. Proceedings of the National Academy of Sciences 113(10),
2591–2596 (2016).

3. Gao X J, Chong L S, Kim M S, et al.: Programmable protein circuits in living cells. Science
361(6408), 1252–1258 (2018).

4. Fink T, Lonzarić J, Praznik A, et al.: Design of fast proteolysis-based signaling and logic
circuits in mammalian cells. Nature chemical biology 15(2), 115–122 (2019).

5. Chen Z, Kibler R D, Hunt A, et al.: De novo design of protein logic gates. Science 368(6486),
78–84 (2020).

6. Dueber J E, Yeh B J, Chak K, et al.: Reprogramming control of an allosteric signaling switch
through modular recombination. Science 301(5641), 1904–1908 (2003).

7. Wodak S J, Paci E, Dokholyan N V, et al.: Allostery in its many disguises: from theory to
applications. Structure 27(4), 566–578 (2019).

8. Dokholyan N V.: Nanoscale programming of cellular and physiological phenotypes: inorganic
meets organic programming. NPJ systems biology and applications 7(1), 15 (2021).

9. Chen J, Vishweshwaraiah Y L, Mailman R B, et al.: A noncommutative combinatorial protein
logic circuit controls cell orientation in nanoenvironments. Science Advances 9(21), eadg1062
(2023).

10. Vishweshwaraiah Y L, Chen J, Chirasani V R, et al.: Two-input protein logic gate for
computation in living cells. Nature communications 12(1), 6615 (2021).

11. Fratto B E, Lewer J M, Katz E.: An Enzyme Based Half-Adder and Half-Subtractor with a
Modular Design. ChemPhysChem 17(14), 2210–2217 (2016).

References 327

12. Katz E, Privman V.: Enzyme-based logic systems for information processing. Chemical
Society Reviews 39(5), 1835–1857 (2010).

13. Baron R, Lioubashevski O, Katz E, et al.: Logic gates and elementary computing by enzymes.
The Journal of Physical Chemistry A 110(27), 8548–8553 (2006).

14. Strack G, Pita M, Ornatska M, et al.: Boolean logic gates that use enzymes as input signals.
ChemBioChem 9(8), 1260–1266 (2008).

15. Katz E.: Boolean Logic Gates Realized with Enzyme-catalyzed Reactions–Unusual Look at
Usual Chemical Reactions. ChemPhysChem 20(1), 9–22 (2019).

16. Baron R, Lioubashevski O, Katz E, et al.: Two coupled enzymes perform in parallel the
‘AND’and ‘InhibAND’ logic gate operations. Organic and biomolecular chemistry 4(6), 989–
991 (2006).

17. Chuang M C, Windmiller J R, Santhosh P, et al.: High-fidelity determination of security threats
via a Boolean biocatalytic cascade. Chemical Communications 47(11), 3087–3089 (2011).

18. Halámek J, Bocharova V, Arugula M A, et al.: Realization and properties of biochemical-
computing biocatalytic XOR gate based on enzyme inhibition by a substrate. The Journal of
Physical Chemistry B 115(32), 9838–9845 (2011).

19. Privman V, Zhou J, Halámek J, et al.: Realization and properties of biochemical-computing
biocatalytic XOR gate based on signal change. The Journal of Physical Chemistry B 114(42),
13601–13608 (2010).

20. Filipov Y, Domanskyi S, Wood M L, et al.: Experimental Realization of a High-Quality
Biochemical XOR Gate. ChemPhysChem 18(20), 2908–2915 (2017).

21. Fratto B E, Roby L J, Guz N, et al.: Enzyme-based logic gates switchable between OR, NXOR
and NAND Boolean operations realized in a flow system. Chemical Communications 50(81),
12043–12046 (2014).

22. Zhou J, Arugula M A, Halamek J, et al.: Enzyme-based NAND and NOR logic gates with
modular design. The Journal of Physical Chemistry B 113(49), 16065–16070 (2009).

23. Niazov T, Baron R, Katz E, et al.: Concatenated logic gates using four coupled biocatalysts
operating in series. Proceedings of the National Academy of Sciences 103(46), 17160–17163
(2006).

24. de Ronde W, ten Wolde P R, Mugler A.: Protein logic: a statistical mechanical study of signal
integration at the single-molecule level. Biophysical Journal 103(5), 1097–1107 (2012).

25. Gunnoo S B, Finney H M, Baker T S, et al.: Creation of a gated antibody as a conditionally
functional synthetic protein. Nature Communications 5(1), 4388 (2014).

26. Oostindie S C, Rinaldi D A, Zom G G, et al.: Logic-gated antibody pairs that selectively act on
cells co-expressing two antigens. Nature Biotechnology 40(10), 1509–1519 (2022).

27. Moon T S, Lou C, Tamsir A, et al.: Genetic programs constructed from layered logic gates in
single cells. Nature 491(7423), 249–253 (2012).

28. Omersa N, Aden S, Kisovec M, et al.: Design of protein logic gate system operating on lipid
membranes. ACS synthetic biology 9(2), 316–328 (2020).

29. McCue A C, Kuhlman B.: Design and engineering of light-sensitive protein switches. Current
opinion in structural biology 74, 102377 (2022).

30. Unger R, Moult J.: Towards computing with proteins. Proteins: Structure, Function, and
Bioinformatics 63(1), 53–64 (2006).

31. Bordoy A E, O’Connor N J, Chatterjee A.: Construction of two-input logic gates using
transcriptional interference. ACS Synthetic Biology 8(10), 2428–2441 (2019).

32. Siuti P, Yazbek J, Lu T K.: Synthetic circuits integrating logic and memory in living cells.
Nature biotechnology 31(5), 448–452 (2013).

33. Ivanov N M, Baltussen M G, Regueiro C L F, et al.: Computing arithmetic functions using
immobilised enzymatic reaction networks. Angewandte Chemie 135(7), e202215759 (2023).

34. van Delft F C, Ipolitti G, Nicolau Jr D V, et al.: Something has to give: scaling combinatorial
computing by biological agents exploring physical networks encoding NP-complete problems.
Interface focus 8(6), 20180034 (2018).

35. Feng H. Future storage technology–protein storage. Recording media technology (5), 48–51
(2008).

328 12 Protein Computing

36. Stuart J A, Marcy D L, Wise K J, et al.: Volumetric optical memory based on bacteriorhodopsin.
Synthetic metals 127(1–3), 3–15 (2002).

37. Chen Y S. Protein storage will replace semiconductor storage. World Science (11), 28–30
(1996).

38. Shi C Y, MIN G Z, Liu X Y. Research progress of protein-based memristor. Acta physica Sinica
(2020).

39. Wang J, Qian F, Huang S, et al.: Recent Progress of Protein-Based Data Storage and
Neuromorphic Devices. Advanced Intelligent Systems 3(1), 2000180 (2021).

40. Zhu B, Wang H, Leow W R, et al.: Silk fibroin for flexible electronic devices. Advanced
Materials 28(22), 4250–4265 (2016).

41. Meng F, Sana B, Li Y, et al.: Bioengineered tunable memristor based on protein nanocage.
Small (Weinheim an der Bergstrasse, Germany) 10(2), 277–283 (2014).

42. Ko Y, Kim Y, Baek H, et al.: Electrically bistable properties of layer-by-layer assembled
multilayers based on protein nanoparticles. ACS nano 5(12), 9918–9926 (2011).

43. Meng F, Jiang L, Zheng K, et al.: Protein-based memristive nanodevices. Small 7(21), 3016–
3020 (2011).

44. Zhang C, Shang J, Xue W, et al.: Convertible resistive switching characteristics between
memory switching and threshold switching in a single ferritin-based memristor. Chemical
communications 52(26), 4828–4831 (2016).

45. He Y X, Zhang N N, Li W F, et al.: N-terminal domain of Bombyx mori fibroin mediates the
assembly of silk in response to pH decrease. Journal of molecular biology 418(3–4), 197–207
(2012).

46. Hota M K, Bera M K, Kundu B, et al.: A natural silk fibroin protein-based transparent bio-
memristor. Advanced Functional Materials 22(21), 4493–4499 (2012).

47. Wang H, Du Y, Li Y, et al.: Configurable resistive switching between memory and threshold
characteristics for protein-based devices. Advanced Functional Materials 25(25), 3825–3831
(2015).

48. Wang H, Zhu B, Ma X, et al.: Physically Transient Resistive Switching Memory Based on Silk
Protein. Small (Weinheim an der Bergstrasse, Germany) 12(20), 2715–2719 (2016).

49. Wang H, Zhu B, Ma X, et al.: Ultra-Lightweight Resistive Switching Memory Devices Based
on Silk Fibroin. Small (Weinheim an der Bergstrasse, Germany) 12(25), 3360–3365 (2016).

50. Song Y, Lin Z, Kong L, et al.: Meso-Functionalization of Silk Fibroin by Upconversion
Fluorescence and Near Infrared In Vivo Biosensing. Advanced Functional Materials 27(26),
1700628 (2017).

51. Gogurla N, Mondal S P, Sinha A K, et al.: Transparent and flexible resistive switching memory
devices with a very high ON/OFF ratio using gold nanoparticles embedded in a silk protein
matrix. Nanotechnology 24(34), 345202 (2013).

52. Shi C, Wang J, Sushko M L, et al.: Silk flexible electronics: from Bombyx mori silk Ag
nanoclusters hybrid materials to mesoscopic memristors and synaptic emulators. Advanced
Functional Materials 29(42), 1904777 (2019).

53. Lv Z, Wang Y, Chen Z, et al.: Phototunable biomemory based on light-mediated charge trap.
Advanced Science 5(9), 1800714 (2018).

54. He X, Zhang J, Wang W, et al.: Transient resistive switching devices made from egg albumen
dielectrics and dissolvable electrodes. ACS applied materials and interfaces 8(17), 10954–
10960 (2016).

55. Chen Y C, Yu H C, Huang C Y, et al.: Nonvolatile bio-memristor fabricated with egg albumen
film. Scientific reports 5(1), 10022 (2015).

56. Zhu J X, Zhou W L, Wang Z Q, et al.: Flexible, transferable and conformal egg albumen based
resistive switching memory devices. RSC advances 7(51), 32114–32119 (2017).

57. Yan X, Li X, Zhou Z, et al.: Flexible transparent organic artificial synapse based on the
tungsten/egg albumen/indium tin oxide/polyethylene terephthalate memristor. ACS applied
materials and interfaces 11(20), 18654–18661 (2019).

58. Zhou G, Ren Z, Wang L, et al.: Artificial and wearable albumen protein memristor arrays with
integrated memory logic gate functionality. Materials Horizons 6(9), 1877–1882 (2019).

References 329

59. Wang H, Meng F, Cai Y, et al.: Sericin for resistance switching device with multilevel
nonvolatile memory. Advanced Materials (Deerfield Beach, Fla.) 25(38), 5498–5503 (2013).

60. Moudgil A, Kalyani N, Sinsinbar G, et al.: S-layer protein for resistive switching and flexible
nonvolatile memory device. ACS applied materials and interfaces 10(5), 4866–4873 (2018).

61. Jang S K, Kim S, Salman M S, et al.: Harnessing recombinant DnaJ protein as reversible metal
chelator for a high-performance resistive switching device. Chemistry of Materials 30(3), 781–
788 (2018).

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Preface
	Declarations
	Contents
	1 Introduction
	1.1 Background of the Emergence of Biological Computation
	1.2 General Definition and Classification of Computers
	1.3 Significance and Research Progress of Biological Computing
	References

	2 Graphs and Computational Complexity
	2.1 Graph Theory Basics
	2.1.1 Definition and Types of Graphs
	2.1.2 Degree Sequence of a Graph
	2.1.3 Graph Operations
	2.1.3.1 Subgraphs and Unary Graph Operations
	2.1.3.2 Binary Graph Operations
	2.1.3.3 Other Unary Graph Operations

	2.1.4 Graph Isomorphism
	2.1.4.1 Isomorphism Testing Algorithms
	2.1.4.2 Applications of Graph Isomorphism

	2.1.5 Matrices of Graphs
	2.1.6 Graph Coloring
	2.1.6.1 Definition and Classification
	2.1.6.2 Chromatic Number of a Graph
	2.1.6.3 Vertex Coloring Algorithms
	2.1.6.4 Application of Graph Coloring

	2.2 Turing Machine
	2.2.1 The Founder of the Turing Machine: Turing
	2.2.2 Turing Machine
	2.2.3 Computability
	2.2.4 Computational Complexity
	2.2.4.1 P Class and NP Class
	2.2.4.2 coNP Problem

	References

	3 Biological Computing: Data
	3.1 DNA Molecules
	3.1.1 Deoxyribonucleic Acid
	3.1.2 DNA Molecular Structure
	3.1.3 Types of DNA Molecules
	3.1.3.1 Single-Stranded DNA
	3.1.3.2 Double-Stranded DNA
	3.1.3.3 Hairpin DNA
	3.1.3.4 DNA with Sticky Ends
	3.1.3.5 Plasmid DNA

	3.1.4 Characteristics of DNA Molecules
	3.1.4.1 Denaturation and Renaturation of DNA Molecules
	3.1.4.2 Melting Temperature
	3.1.4.3 Forces within DNA Molecules
	3.1.4.4 Replication of DNA Molecules

	3.1.5 DNA Biochemical Reactions
	3.1.5.1 Complete Hybridization
	3.1.5.2 False Positive Hybridization
	3.1.5.3 False Negative Hybridization
	3.1.5.4 Hairpin Hybridization

	3.2 RNA Molecules
	3.2.1 Nucleotides
	3.2.2 RNA Molecular Structure
	3.2.3 Types of RNA Molecules

	3.3 Protein Molecules
	3.3.1 Protein Structure
	3.3.2 Protein Classification
	3.3.3 Detection Technology

	References

	4 Biological Computing Operators: Enzymes and Biochemical Operations
	4.1 Commonly Used Enzymes in Biological Computing
	4.1.1 Restriction Endonucleases
	4.1.2 Polymerase
	4.1.3 Ligase
	4.1.4 Modification Enzymes
	4.1.5 Nucleases

	4.2 Biochemical Operations in Biocomputing
	4.2.1 Synthesis of DNA Molecules
	4.2.2 Cutting, Connecting, and Pasting of DNA Molecules
	4.2.3 DNA Recombination Technology
	4.2.4 Denaturation and Hybridization
	4.2.5 Amplification of DNA Molecules
	4.2.6 Separation and Extraction of DNA Molecules
	4.2.6.1 Gel Electrophoresis Technology
	4.2.6.2 DNA Molecule Extraction Technology

	4.2.7 Detection and Reading of DNA Molecules
	4.2.7.1 DNA Molecule Hybridization
	4.2.7.2 DNA Sequence Determination

	4.2.8 Other Biochemical Operation Techniques for Biological Computation
	4.2.8.1 Biochip Technology
	4.2.8.2 Piezoelectric Gene Sensor Technology
	4.2.8.3 Microchip Laboratory Technology

	4.2.9 New Biochemical Operations and Techniques for Biological Computing
	4.2.9.1 CRISPR/Cas9 Derived Technology
	4.2.9.2 CRISPR/Cas12a Gene Editing Technology
	4.2.9.3 Application of Gene Editing Technology in DNA Computing

	4.2.10 New Instruments Involved in Biological Computing
	4.2.10.1 Atomic Force Microscope
	4.2.10.2 Super-Resolution Fluorescence Microscope
	4.2.10.3 DNA Synthesizer
	4.2.10.4 DNA Sequencer

	4.3 Key Technology of Biological Computing: GelElectrophoresis
	4.3.1 Basic Principles
	4.3.2 Gel Electrophoresis
	4.3.3 Immunoelectrophoresis
	4.3.4 Capillary Electrophoresis
	4.3.5 Dielectrophoresis
	4.3.6 Isotachophoresis

	4.4 Key Technology in Biological Computing: Polymerase Chain Reaction
	4.4.1 The Journey of PCR Invention
	4.4.2 Basic Principles

	Appendix
	References

	5 DNA Coding Theory and Algorithms
	5.1 Introduction
	5.1.1 An Overview of the Advancement in DNA Coding Design
	5.1.2 Organization

	5.2 DNA Coding Problem
	5.2.1 Constraints in DNA Coding Design
	5.2.1.1 Distance Constraints
	5.2.1.2 Thermodynamic Constraints
	5.2.1.3 Secondary Structure Constraints 5:r26
	5.2.1.4 Sequence Constraints

	5.2.2 DNA Coding Problem and Its Mathematical Model
	5.2.3 Classification of DNA Coding Algorithms

	5.3 Counting DNA Coding Sequences Based on GC Content
	5.3.1 Counting Theory for Designing DNA Sequences
	5.3.2 DNA Coding Design with Identical GC Content

	5.4 Template Method
	5.4.1 Preliminaries for Template Method
	5.4.1.1 Template Coding Search Algorithms

	5.4.2 Thermodynamic Stability of DNA Codes
	5.4.3 Optimization of Template Sets

	5.5 Multi-Objective Optimization Method
	5.5.1 Optimization Model for DNA Coding Design
	5.5.2 Multi-Objective Evolutionary Algorithm for DNA Coding Design
	5.5.3 Multi-Objective Evolutionary Algorithms for DNA Code Design

	5.6 Implicit Enumeration Method
	5.6.1 Coding Algorithm
	5.6.2 Application of Implicit Enumeration Coding Method

	References

	6 Enumerative DNA Computing Model
	6.1 DNA Computing Model for the Directed Hamiltonian Path Problem
	6.2 DNA Computing Model of Satisfiability Problem
	6.3 DNA Computing Model of the Maximum Clique and Maximum Independent Set Problem of the Graph
	6.4 DNA Computing Model for the 0-1 Programming Problem
	6.5 DNA Computing Model for the Graph VertexColoring Problem
	References

	7 Non-enumerative DNA Computation Model for Graph Vertex Coloring
	7.1 Basic Idea of The Non-enumerative DNA Computing Model
	7.2 Biological Implementation of The Non-enumerative DNA Computing Model
	7.2.1 Biological Operation Steps
	7.2.2 Case Analysis and Related Biochemical Experiments

	7.3 Analysis of Non-enumerative DNA Computing Model
	7.4 Other Non-enumerative DNA Computing Models
	References

	8 Parallel Vertex Coloring DNA Computing Model
	8.1 Model and Algorithm
	8.1.1 Subgraph Partitioning and Determination of Bridge Vertices
	8.1.2 Subgraph Vertex Sorting and Determination of Color Set of Each Vertex in Subgraph
	8.1.2.1 Subgraph Vertex Sorting
	8.1.2.2 Determination of Vertex Color Set

	8.1.3 Encoding of DNA Sequences
	8.1.4 Determine the Calculation Probe According to the Probe Diagram
	8.1.5 Initial Solution Space Construction
	8.1.6 Non-solution Deletion
	8.1.7 Subgraph Merging and Non-solution Deletion
	8.1.8 Solution Detection

	8.2 Specific Example
	8.2.1 Subgraph Partitioning and Color Set Determination
	8.2.2 Encoding
	8.2.3 Construction of Initial Solution Space
	8.2.4 Subgraph Non-solution Deletion
	8.2.5 Subgraph Merging and Non-solution Deletion

	8.3 Complexity Analysis
	8.3.1 Analysis of Reducing the Complexity of the Initial Solution Space
	8.3.2 Enhancing Parallelism with PCR Technology

	References

	9 Probe Machine
	9.1 Background of the Probe Machine
	9.2 Principle of Probe Machine
	9.2.1 Analysis of Turing Machine Mechanism
	9.2.1.1 Linear Data Placement Mode
	9.2.1.2 Serial Data Processing Mode

	9.2.2 Mathematical Model of the Probe Machine
	9.2.2.1 Database X
	9.2.2.2 Probe Library
	9.2.2.3 Data Controller σ1 and Probe Controller σ2
	9.2.2.4 Probe Operation τ
	9.2.2.5 Computing Platform λ
	9.2.2.6 Detector η
	9.2.2.7 Steps of Probe Operation
	9.2.2.8 True Solution Storage and Residual Recycler
	9.2.2.9 Structure Model of Probe Machine

	9.3 Probe Machine Solves Hamilton Circle Problem
	9.4 A Technology for Implementing a ConnectedProbe Machine
	9.5 Transmissive Probe Machine and Biological Neural Network
	9.6 Probe Machine Function Analysis
	9.6.1 Turing Machines Are a Special Caseof Probe Machines
	9.6.2 Can Turing Machines Simulate Probe Machines?
	9.6.3 Advantages of the Probe Machine

	9.7 Conclusion
	References

	10 DNA Algorithmic Self-Assembly
	10.1 DNA Tile Computation
	10.1.1 DNA Tile Types
	10.1.2 DNA Tile Calculation Example

	10.2 Turing Equivalent Tile Calculation
	10.2.1 Mathematical Model of DNA Tile Calculation
	10.2.2 Turing Equivalence of DNA Tile Computation

	10.3 Programmable Tile Structure
	10.4 Single-Strand Tile Calculation
	10.5 Universal DNA Computer Based on SST
	10.5.1 Iterative Boolean Circuit Computing Model Based on SST
	10.5.2 Computation Model Based on Repeatable SST

	10.6 DNA Origami Computation
	10.6.1 DNA Origami Technology
	10.6.2 Programmable Self-Assembly of DNA Origami
	10.6.3 DNA Origami Surface Computing
	10.6.4 Computable DNA Origami Structure

	References

	11 RNA Computing
	11.1 Computational Characteristics of RNA Molecules
	11.2 RNA Computation Model for Solving NP-Complete Problems
	11.3 Related Research on RNA Computing in Logic Gates and Logic Circuits
	11.3.1 Prediction and Design of RNA Molecular Structure
	11.3.2 RNA Computing Based on Molecular Automata
	11.3.3 RNA Computing Combined with RNA Interference Technology (RNAi)
	11.3.4 RNA Computation Combining Ribozyme and Aptamers Technology
	11.3.5 RNA Computation Combining CRISPR/Cas Gene Editing Technology
	11.3.6 RNA Computing Combined with Synthetic Biology Techniques

	References

	12 Protein Computing
	12.1 Introduction
	12.2 Building Logic Calculators Based on Proteins
	12.2.1 Enzyme-Mediated Logic Calculators
	12.2.1.1 General Definition of Enzyme-Based Logic Calculators
	12.2.1.2 Enzyme-Based Boolean Logic Gates
	12.2.1.3 Enzyme-Based Logic Circuits

	12.2.2 Non-enzyme Mediated Logic Operators
	12.2.2.1 Receptor-Ligand Interactions
	12.2.2.2 Conformational Effects
	12.2.2.3 Post-translational Modification

	12.2.3 Logic Calculators Based on Artificially Designed Proteins

	12.3 Building Arithmetic Calculators Based on Proteins
	12.4 Solving NP-complete Problems Based on Protein Molecules
	12.5 Protein Storage
	12.5.1 Protein Storage Based on Bacteriorhodopsin
	12.5.2 Protein-Based Memory Resistors
	12.5.2.1 Ferritin Memristor
	12.5.2.2 Silk Protein Memristor
	12.5.2.3 Egg Albumen Memristor
	12.5.2.4 Other Protein-Based Memristors

	References

	Untitled

